Supporting Information

A fluorescence “turn-on” chemosensor for Hg\(^{2+}\) and Ag\(^{+}\) based on NBD (7-nitrobenzo-2-oxa-1,3-diazolyl)

Seong Youl Lee, Kwon Hee Bok, Cheal Kim*

Department of Fine Chemistry and Department of Interdisciplinary Bio IT Materials, Seoul National University of Science and Technology, Seoul 139-743, Korea. Fax: +82-2-973-9149; Tel: +82-2-970-6693; E-mail: chealkim@seoultech.ac.kr
Table S1. Examples of chemosensors for simultaneous detection of Hg$^{2+}$ and Ag$^+$.

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Detection limit (Hg$^{2+}$/Ag$^+$, μM)</th>
<th>Binding constant (Hg$^{2+}$/Ag$^+$, M$^{-1}$)</th>
<th>Percent of water in solution (%)</th>
<th>Method of detection (Hg$^{2+}$/Ag$^+$)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.29 / 0.4</td>
<td>2.3 x 105 / 5.1 x 107</td>
<td>50</td>
<td>Fluorescence</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>140 / 650</td>
<td>No data</td>
<td>15</td>
<td>Fluorescence, Colorimetric</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>0.21 / 0.009</td>
<td>2.2 x 105 / No data</td>
<td>40</td>
<td>Fluorescence</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>0.25 / No data</td>
<td>7.4 x 107 / No data</td>
<td>80</td>
<td>Fluorescence</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>No data</td>
<td>1.0 x 105 / 4.1 x 106</td>
<td>0.5</td>
<td>Fluorescence</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>0.37 / 0.34</td>
<td>2.6 x 103 / No data</td>
<td>67</td>
<td>Fluorescence</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>0.19 / 0.59</td>
<td>1.0 x 107 / 9.4 x 107</td>
<td>10</td>
<td>Fluorescence</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>0.13 / No data</td>
<td>3.1 x 107 / 1.2 x 109</td>
<td>50</td>
<td>Fluorescence, Colorimetric</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>0.05 / 0.12</td>
<td>5.0 x 107 / 3.5 x 109</td>
<td>70</td>
<td>Fluorescence</td>
<td>This work</td>
</tr>
</tbody>
</table>

2
References
Fig. S1 1H NMR spectrum of 2.
Fig. S2 1H NMR spectrum of 1.
Fig. S3 \(^{13}\text{C}\) NMR spectrum of 1.
Fig. S4 Job plot of 1 and Hg$^{2+}$. The total concentrations of 1 and Hg$^{2+}$ were 20 μM.
Fig. S5 1H NMR titration of 1 with Hg$^{2+}$ ions.
Fig. S6 Benesi-Hildebrand plot (at 520 nm) of 1 based on fluorescence titration, assuming 1:1 stoichiometry for association between 1 and Hg$^{2+}$.

\[y = 8 \times 10^{-9}x + 0.0004 \]

\[R^2 = 0.9976 \]

\[K = 5.0 \times 10^4 \]
Fig. S7 Determination of the detection limit based on change in the ratio of 1 (5 μM) with Hg$^{2+}$.

\[y = 97.179x + 41.19 \]
\[R^2 = 0.9998 \]
\[\text{LOD} = 0.05 \text{ μM} \]
Fig. S8 Fluorescence intensities (520 nm) of 1 (5 μM) and 1-Hg\(^{2+}\) complex, respectively, at pH 2-12 in a mixture of buffer-CH\(_3\)CN (7:3, v/v) at room temperature.
Fig. S9 Absorption spectral changes of 1 (5 μM) in the presence of different concentrations of Ag⁺ ions in a mixture of buffer-CH₂CN (7:3, v/v) at room temperature.
Fig. S10 Job plot of 1 and Ag⁺. The total concentrations of 1 and Ag⁺ were 20 μM.
Fig. S11 Positive-ion electrospray ionization mass spectrum of 1 (10 μM) upon addition of AgNO₃ (1.0 equiv).
Fig. S12 1H NMR titration of 1 with Ag$^+$ ions.
Fig. S13 Benesi-Hildebrand plot (at 520 nm) of 1 based on fluorescence titration, assuming 1:1 stoichiometry for association between 1 and Ag\(^+\).
Fig. S14 Determination of the detection limit based on change in the ratio of 1 (5 μM) with Ag$^+$.

\[
y = 51.636x + 31.985 \\
R^2 = 0.9996 \\
LOD = 0.12 \mu M
\]
Fig. S15 Competitive selectivity of 1 (5 μM) toward Ag⁺ (2.6 equiv) in the presence of other metal ions (2.6 equiv).
Fig. S16 Fluorescence intensities (520 nm) of 1 (5 μM) and 1-Ag$^+$ complex, respectively, at pH 2-12 in a mixture of buffer-CH$_3$CN (7:3, v/v) at room temperature.
Fig. S17 Fluorescence spectral changes of 1 (5 µM) after the sequential addition of (a) Ag⁺ and Cl⁻, and (b) Hg²⁺ and Cl⁻.
Fig. S18 Emission intensity (520 nm) of 1 as a function of Ag$^+$ concentration. [1] = 5 μmol/L and [Ag$^+$] = 0.0-12.0 μmol/L in buffer-CH$_3$CN mixture (7:3, v/v).
Fig. S19 (a) The theoretical excitation energies and the experimental UV-vis spectrum of 1.
(b) The major electronic transition energies and molecular orbital contributions for 1 (H = HOMO and L = LUMO).
(a) The theoretical excitation energies and the experimental UV-vis spectrum of 1-Hg\(^{2+}\). (b) The major electronic transition energies and molecular orbital contributions for 1-Hg\(^{2+}\) (H = HOMO and L = LUMO).

<table>
<thead>
<tr>
<th>Excited state 3</th>
<th>Wavelength (nm)</th>
<th>Percent (%)</th>
<th>Main character</th>
<th>Oscillator strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>H → L + 2</td>
<td>337.73</td>
<td>83</td>
<td>Inhibited PET, (\pi \rightarrow \pi^*)</td>
<td>0.5289</td>
</tr>
</tbody>
</table>
Fig. S21 Molecular orbital diagrams and excitation energies of 1 and 1-Hg$^{2+}$ complex.
Fig. S22 (a) The theoretical excitation energies and the experimental UV-vis spectrum of 1-Ag⁺. (b) The major electronic transition energies and molecular orbital contributions for 1-Ag⁺ (H = HOMO and L = LUMO).
Fig. S23 Molecular orbital diagrams and excitation energies of 1 and 1-Ag⁺ complex.