Electronic Supplementary Information

RGO/TiO$_2$ nanosheets immobilized on magnetically actuated artificial cilia film: A new mode for efficient photocatalytic reaction

Wei Wanga,b,*, Xiaogu Huanga,b, Min Laia, Chunhua Lub,c,*

aSchool of Physics and Optoelectronic Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, PR China

bJiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, PR China

cState Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, PR China
Fig. S1 XRD pattern of as-prepared TiO$_2$ nanosheets.

Fig. S2 Photograph of water droplets deposited on the PDMS film (a) before and (b) after AAPGD treatment.
Fig. S3 Photocatalytic activity of pristine and APTMS modified TiO$_2$ nanosheets in decomposing RhB. Photograph of APTMS modified TiO$_2$ nanosheets dispersed in ethanol is inserted.

Fig. S4 Light absorption spectra of the cilia film immobilized RGO/TiO$_2$ at the static state and dynamic state (800 r/min).
Fig. S5 Circular reactions of as-prepared artificial cilia film in decomposing RhB at a magnetic actuation speed of 800r/min.

Fig. S6 SEM images of (a) typical cilia surface and (b) the reduced TiO$_2$ density and positive effect of RGO after 15 circular reactions.

Fig. S7 Raman spectra of GO and RGO.