Half-Sandwich Chiral Rare-Earth Metal Complexes with Linked Tridentate Amido-Indenyl Ligand: Synthesis, Characterization, and Catalytic Properties for Intramolecular Hydroamination

Zhuo Chai, Jiang Chu, Yunyi Qi, Mujun Tang, Jinsong Hou, Gaosheng Yang*

Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Institute of Organic Chemistry, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China

gshyang@mail.ahnu.edu.cn

Electronic Supplementary Information

Content

Copies of 1H NMR and 13C NMR for ligand..S2
Copies of 1H NMR and 13C NMR for rare-earth metal complexes ...S4
Determination of the enantiomeric excess (ee) values ..S8
Copies of 1H NMR and 13C NMR for aminoalkene substrates...S14
Copies of 1H NMR and 13C NMR for 4-methoxybenzoyl amides ...S31
1H NMR monitoring of reactions in Table 4...S67
Copies of 1H NMR and 13C NMR for ligand
Copies of 1H NMR and 13C NMR for rare-earth metal complexes
Determination of the enantiomeric excess (ee) values

The enantiomeric excess values were determined by HPLC analysis of 7 using AS-H, AD-H, or OJ-H column. Typical procedure of derivatization: To a solution of the corresponding cyclized product 6 (0.16 mmol) in CH2Cl2 (5 mL) was added 4-dimethylaminopyridine (DMAP, 4.8 mg, 0.04 mmol), triethylamine (45 μL, 0.3 mmol), and 4-methoxybenzoyl chloride (40 μL, 0.3 mmol) at ambient temperature. After stirring for 2 h, a saturated aqueous solution of ammonium chloride (5 mL) was poured into the reaction mixture and the layers were separated. The aqueous layer was extracted with CH2Cl2 (3×5 mL). The combined organic layers were washed with saturated aqueous solution of ammonium chloride (5 mL), dried over anhydrous magnesium sulfate, filtered, and concentrated in vacuo. The crude product was purified by preparative TLC (silica gel).

(7a): Purified by preparative TLC (petroleum ether/ethyl acetate = 4/1) to afford the product as a white solid in 94% yield (87% ee). The ee was determined by HPLC analysis using a Chiralcel OD-H column (1/1 hexane/i-PrOH; flow rate 1.0 mL/min; λ = 254 nm; tR = 6.2 (minor), 8.1 (major) min). 1H NMR (300 MHz, CDCl3): δ 7.52 (d, J = 8.8 Hz, 2H), 7.36–7.08 (m, 11H), 7.06–6.91 (m, 6H), 4.39–4.25 (m, 2H), 3.87 (s, 3H), 3.57 (d, J = 11.1 Hz, 1H), 3.31 (dd, J = 13.2, 3.0 Hz, 1H), 3.04 (dd, J = 12.9, 8.1 Hz, 1H), 2.74–2.64 (m, 1H), 2.49 (dd, J = 12.6, 10.5 Hz, 1H). 13C NMR (75.5 MHz, CDCl3): δ 169.9, 161.3, 145.2, 144.1, 138.1, 130.0, 129.5, 129.1, 128.6, 128.5, 128.4, 126.7, 126.6, 126.5, 126.4, 113.7, 60.2, 57.3, 55.4, 53.4, 42.0, 38.5. HRMS (ESI) calcd for C31H29NO2Na ([M + Na]+) 470.2096, found 470.2095.

(7b): Purified by preparative TLC (petroleum ether/ethyl acetate = 4/1) to afford the product as a white solid in 92% yield (68% ee). The ee was determined by HPLC analysis using a Chiralcel OD-H column (1/1 hexane/i-PrOH; flow rate 1.0 mL/min; λ = 254 nm; tR = 37.9 (major), 11.6 (minor) min). 1H NMR (300 MHz, CDCl3): δ 7.54 (d, J = 8.2 Hz, 2H), 7.33–7.10 (m, 8H), 7.03 (d, J = 7.5 Hz, 2H), 6.94 (d, J = 8.2 Hz, 2H), 4.38 (d, J = 11.1 Hz, 1H), 4.17–4.01 (m, 1H), 3.94–3.76 (m, 4H), 2.96–2.81 (m, 1H), 2.36 (t, J = 11.3 Hz, 1H), 1.45 (d, J = 5.8 Hz, 3H). 13C NMR (75.5 MHz, CDCl3): δ 168.8, 160.2, 144.4, 143.3, 128.5, 128.3, 127.6, 127.5, 125.7, 125.6, 125.5, 125.3, 112.6, 58.7, 54.3, 52.6, 51.5, 44.6, 18.8. HRMS (ESI) calcd for C25H26NO2 ([M + H]+) 372.1964,
found 372.1964.

(7c): Purified by preparative TLC (petroleum ether/ethyl acetate = 4/1) to afford the product as a white solid in 94% yield (45% ee). Mp 187–188 °C. The ee was determined by HPLC analysis using a Chiralcel AD-H column (1/1 hexane/i-PrOH; flow rate 1.0 mL/min; λ = 254 nm; tR = 8.2 (major), 20.6 (minor) min). 1H NMR (300 MHz, CDCl3): δ 7.44–7.12 (m, 12H), 6.93–6.83 (m, 2H), 5.41–5.10 (brs, 1H), 4.34–4.07 (brs, 1H), 3.81 (s, 3H), 3.17 (d, J = 13.5 Hz, 1H), 2.66–2.49 (m, 2H), 1.84–1.66 (m, 1H), 1.43 (d, J = 13.5 Hz, 1H), 1.20 (d, J = 6.9 Hz, 3H). 13C NMR (75.5 MHz, CDCl3): δ 171.0, 160.4, 147.4, 143.8, 129.3, 128.5, 128.4, 128.0, 127.7, 126.5, 126.4, 126.1, 113.8, 55.3, 48.4, 47.2, 45.9, 29.5, 26.2, 17.2. HRMS (ESI) calcd for C26H28NO2 ([M + H]+) 386.2120, found 386.2120.

(7d): Purified by preparative TLC (petroleum ether/ethyl acetate = 4/1) to afford the product as a viscous colorless oil in 91% yield (56% ee). The ee was determined by HPLC analysis using a Chiralcel AS-H column (4/1 hexane/i-PrOH; flow rate 0.8 mL/min; λ = 254 nm; tR = 9.03 (minor), 11.2 (major) min). 1H NMR (300 MHz, CDCl3): δ 7.51 (d, J = 8.4 Hz, 2H), 6.96–6.84 (m, 2H), 4.44–4.23 (m, 1H), 3.84 (s, 3H), 3.39–3.25 (m, 1H), 3.24–3.07 (m, 1H), 1.99–1.85 (m, 1H), 1.49–1.25 (m, 4H), 1.06 (s, 3H), 0.90 (s, 3H). 13C NMR (75.5 MHz, CDCl3): δ 169.8, 161.0, 129.6, 113.4, 62.9, 55.3, 53.0, 47.6, 38.3, 25.8, 25.5, 20.3. HRMS (ESI) calcd for C15H21NO2Na ([M + Na]+) 270.1470, found 270.1470.

(7e): Purified by preparative TLC (petroleum ether/ethyl acetate = 6/1) to afford the product as a viscous colorless oil in 90% yield (52% ee). The ee was determined by HPLC analysis using a Chiralcel AS-H column (2/1 hexane/i-PrOH; flow rate 1.0 mL/min; λ = 254 nm; tR = 9.47 (major), 6.83 (minor) min). 1H NMR (300 MHz, CDCl3): δ 7.56–7.48 (m, 2H), 7.34–7.18 (m, 5H), 6.95–6.87 (m, 2H), 4.65–4.50 (m, 1H), 3.84 (s, 3H), 3.27 (dd, J = 12.9, 2.6 Hz, 1H), 3.13 (d, J = 13.2 Hz, 1H), 3.05–2.88 (m, 2H), 1.70 (ddd, J = 12.6, 7.4, 1.7 Hz, 1H), 1.56 (dd, J = 12.5, 10.0 Hz, 1H), 0.95 (s, 3H), 0.84 (s, 3H). 13C NMR (75.5 MHz, CDCl3): δ 169.9, 161.0, 129.6, 113.4, 62.9, 55.3, 53.0, 47.6, 38.3, 25.8, 25.5. HRMS (ESI) calcd for C21H26NO2 ([M + H]+) 324.1964, found 324.1963.

(7f): Purified by preparative TLC (petroleum ether/ethyl acetate = 5/1) to afford the product as a viscous colorless oil in 93% yield (41% ee). The ee was determined by HPLC analysis using a Chiralcel AS-H column (3/1
hexane/i-PrOH; flow rate 1.0 mL/min; λ = 254 nm; tR = 10.12 (major), 12.32 (minor) min.

1H NMR (300 MHz, CDCl3): δ 7.31 (d, J = 8.6 Hz, 2H), 6.90 (d, J = 8.6 Hz, 1H), 4.79–4.27 (brs, 1H), 3.83 (s, 3H), 3.76–3.36 (brs, 1H), 2.79 (d, J = 12.9 Hz, 1H), 2.00–1.83 (m, 1H), 1.65–1.50 (m, 1H), 1.42–1.24 (m, 2H), 1.20 (d, J = 6.9 Hz, 3H), 0.93 (s, 3H), 0.90 (s, 3H). 13C NMR (75.5 MHz, CDCl3): δ 170.9, 160.2, 129.4, 128.3, 113.7, 55.3, 32.4, 31.4, 29.1, 26.1, 23.0, 16.2. HRMS (ESI) calcd for C16H24NO2 ([M + H]+) 262.1807, found 262.1806.

(7g): Purified by preparative TLC (petroleum ether/ethyl acetate = 4/1) to afford the product as a viscous colorless oil in 91% yield (65% ee). The ee was determined by HPLC analysis using a Chiralcel AS-H column (1/1 hexane/i-PrOH; flow rate 1.0 mL/min; λ = 254 nm; tR = 12.52 (major), 7.61 (minor) min).

1H NMR (300 MHz, CDCl3): δ 7.51 (d, J = 8.1 Hz, 2H), 6.95–6.85 (m, 2H), 4.39–4.17 (brs, 1H), 3.84 (s, 3H), 3.36 (d, J = 10.2 Hz, 1H), 3.22 (d, J = 10.5 Hz, 1H), 2.12 (dd, J = 12.3, 7.5 Hz, 1H), 1.60–1.12 (m, 14H). 13C NMR (75.5 MHz, CDCl3): δ 169.9, 160.9, 129.5, 113.4, 60.7, 55.3, 52.1, 44.7, 42.3, 36.3, 33.4, 26.1, 22.5, 20.3. HRMS (ESI) calcd for C18H26NO2 ([M + H]+) 288.1963, found 288.1961.

(7h): Purified by preparative TLC (petroleum ether/ethyl acetate = 5/1) to afford the product as a viscous colorless oil in 89% yield (43% ee). The ee was determined by HPLC analysis using a Chiralcel AS-H column (3/1 hexane/i-PrOH; flow rate 1.0 mL/min; λ = 254 nm; tR = 13.36 (major), 7.88 (minor) min).

1H NMR (300 MHz, CDCl3): δ 7.31 (d, J = 8.6 Hz, 2H), 6.90 (d, J = 8.6 Hz, 2H), 4.73–4.31 (brs, 1H), 3.84 (s, 3H), 2.70 (d, J = 12.8 Hz, 1H), 2.00–1.69 (m, 2H), 1.62–1.12 (m, 16H). 13C NMR (75.5 MHz, CDCl3): δ 170.9, 160.9, 129.4, 128.6, 113.7, 55.3, 38.3, 33.8, 30.9, 29.9, 26.5, 25.4, 21.6, 21.4, 16.4. HRMS (ESI) calcd for C19H28NO2 ([M + H]+) 302.2120, found 302.2119.

(7i): Purified by preparative TLC (petroleum ether/ethyl acetate = 4/1) to afford the product as a viscous colorless oil in 90% yield (65% ee). The ee was determined by HPLC analysis using a Chiralcel AD-H column (1/1 hexane/i-PrOH; flow rate 1.0 mL/min; λ = 254 nm; tR = 25.31 (major), 12.25 (minor) min).

1H NMR (500 MHz, CDCl3): δ 7.58 (d, J = 7.9 Hz, 2H), 7.33 (d, J = 7.8 Hz, 2H), 7.25–7.02 (m, 10H), 7.01–6.92 (m, 4H), 4.43–4.32 (m, 2H), 3.89 (s, 3H), 3.67 (d, J = 12.1 Hz, 1H), 3.57 (d, J = 13.4 Hz, 1H), 3.28–3.21 (m, 1H), 2.75–2.68 (m, 1H), 2.63–2.55 (m, 1H). 13C NMR (125 MHz, CDCl3): δ 170.2, 161.4, 145.2, 144.0, 138.1, 132.9, 132.0, 129.7, 129.0, 128.65, 128.56, 128.1, 127.4, 126.7, 126.64, 126.55, 126.4, 125.4, 113.8, 60.1, 57.3, 55.4, 53.5, 42.0, 37.8. HRMS (ESI–TOF) m/z [M + H]+ calcd for C31H29BrNO2 526.1382, found 526.1382.
(7j): Purified by preparative TLC (petroleum ether/ethyl acetate = 4/1) to afford the product as a white solid in 94% yield (80% ee). The ee was determined by HPLC analysis using a Chiralcel AD-H column (1/1 hexane/i-PrOH; flow rate 1.0 mL/min; λ = 254 nm; t_R = 32.58 (major), 12.82 (minor) min). ¹H NMR (500 MHz, CDCl₃): δ 7.52 (d, J = 8.6 Hz, 2H), 7.43 (d, J = 8.2 Hz, 2H), 7.33–7.09 (m, 8H), 7.04 (d, J = 7.9 Hz, 2H), 7.00–6.93 (m, 4H), 4.35 (dd, J = 11.2, 1.5 Hz, 1H), 4.29–4.21 (m, 1H), 3.88 (s, 3H), 3.58 (d, J = 11.2 Hz, 1H), 3.25 (dd, J = 13.2, 2.8 Hz, 1H), 3.02 (dd, J = 13.2, 8.1 Hz, 1H), 2.69 (ddd, J = 12.2, 6.3, 1.5 Hz), 2.43 (dd, J = 12.0, 11.1 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 170.1, 161.5, 145.1, 143.9, 137.1, 131.7, 131.5, 129.5, 128.9, 128.7, 128.6, 126.7, 126.65, 126.60, 126.3, 120.4, 113.8, 60.2, 57.1, 55.4, 53.4, 42.0, 37.9. HRMS (ESI–TOF) m/z [M + H]⁺ calcd for C₃₁H₂₉BrNO₂ 526.1382, found 526.1380.

(7k): Purified by preparative TLC (petroleum ether/ethyl acetate = 4/1) to afford the product as a white solid in 86% yield (51% ee). The ee was determined by HPLC analysis using a Chiralcel AD-H column (1/1 hexane/i-PrOH; flow rate 1.0 mL/min; λ = 254 nm; t_R = 12.01 (major), 8.1 (minor) min). ¹H NMR (500 MHz, CDCl₃): δ 7.56 (d, J = 8.6 Hz, 2H), 7.41 (d, J = 1.9 Hz, 1H), 7.28–7.10 (m, 8H), 7.06 (d, J = 7.4 Hz, 2H), 7.00–6.94 (m, 4H), 4.40 (dd, J = 11.0, 1.2 Hz, 1H), 4.34–4.26 (m, 1H), 3.88 (s, 3H), 3.67 (d, J = 11.2 Hz, 1H), 3.49 (dd, J = 13.5, 3.5 Hz, 1H), 3.19 (dd, J = 13.5, 7.7 Hz, 1H), 2.75–2.68 (m, 1H), 2.49 (dd, J = 12.0, 11.2 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 170.3, 161.5, 145.1, 143.9, 135.3, 135.0, 132.9, 132.8, 129.6, 129.3, 128.8, 128.7, 128.6, 127.1, 126.71, 126.67, 126.6, 126.3, 113.8, 60.1, 57.2, 55.4, 53.5, 42.0, 34.9. HRMS (ESI–TOF) m/z [M + H]⁺ calcd for C₃₁H₂₈Cl₂NO₂ 516.1497, found 516.1492.

(7l): Purified by preparative TLC (petroleum ether/ethyl acetate = 4/1) to afford the product as a white solid in 92% yield (80% ee). The ee was determined by HPLC analysis using a Chiralcel AD-H column (1/1 hexane/i-PrOH; flow rate 1.0 mL/min; λ = 254 nm; t_R = 30.1 (major), 10.6 (minor) min). ¹H NMR (500 MHz, CDCl₃): δ 7.52 (d, J = 8.7 Hz, 2H), 7.28 (d, J = 8.3 Hz, 2H), 7.25–7.10 (m, 8H), 7.04 (d, J = 7.3 Hz, 2H), 7.00–6.94 (m, 4H), 4.35 (dd, J = 11.2, 1.9 Hz, 1H), 4.30–4.22 (m, 1H), 3.88 (s, 3H), 3.57 (d, J = 11.1 Hz, 1H), 3.26 (dd, J = 13.2, 2.8 Hz, 1H), 3.04 (dd, J = 13.2, 8.1 Hz, 1H), 2.72–2.66 (m, 1H), 2.43 (dd, J = 12.2, 10.9 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 170.1, 161.4, 145.1, 144.0, 136.6, 132.3, 131.3, 129.5,
128.9, 128.7, 128.6, 128.5, 126.7, 126.65, 126.60, 126.3, 113.8, 60.2, 57.2, 55.4, 53.4, 42.0, 37.8.

HRMS (ESI–TOF) m/z [M + H]+ calcd for C₃₁H₂₉ClNO₂ 482.1887, found 482.1884.

(7m): Purified by preparative TLC (petroleum ether/ethyl acetate = 4/1) to afford the product as a white solid in 93% yield (67% ee). The ee was determined by HPLC analysis using a Chiralcel AD-H column (1/1 hexane/i-PrOH; flow rate 1.0 mL/min; λ = 254 nm; tᵣ = 31.03 (major), 14.44 (minor) min).¹H NMR (500 MHz, CDCl₃): δ 7.56–7.50 (m, 2H), 7.24–7.08 (m, 10H), 7.07–7.01 (m, 2H), 7.00–6.92 (m, 4H), 4.36–4.25 (m, 2H), 3.87 (s, 3H), 3.58 (d, J = 11.2 Hz, 1H), 3.26 (dd, J = 13.1, 2.7 Hz, 1H), 3.01 (dd, J = 13.2, 8.1 Hz, 1H), 2.73–2.65 (m, 1H), 2.48 (dd, J = 12.3, 10.7 Hz, 1H), 2.33 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 169.9, 161.3, 145.3, 144.2, 135.8, 135.0, 129.9, 129.5, 129.2, 129.0, 128.6, 128.5, 126.7, 126.6, 126.5, 126.4, 113.7, 60.2, 57.4, 55.4, 53.4, 42.0, 38.1, 21.1. HRMS (ESI–TOF) m/z [M + H]+ calcd for C₃₂H₃₂NO₂ 462.2433, found 462.2430.

(7n): Purified by preparative TLC (petroleum ether/ethyl acetate = 4/1) to afford the product as a white solid in 95% yield (28% ee). The ee was determined by HPLC analysis using a Chiralcel AD-H column (1/1 hexane/i-PrOH; flow rate 1.0 mL/min; λ = 254 nm; tᵣ = 26.67 (major), 10.33 (minor) min).¹H NMR (500 MHz, CDCl₃): δ 7.52 (d, J = 8.0 Hz, 2H), 7.33–7.09 (m, 9H), 7.07–6.92 (m, 5H), 6.84 (d, J = 7.7 Hz, 2H), 4.37–4.22 (m, 2H), 3.87 (s, 3H), 3.80 (s, 3H), 3.58–3.50 (m, 1H), 3.24–3.16 (m, 1H), 3.02 (dd, J = 13.2, 8.2 Hz, 1H), 2.74–2.64 (m, 1H), 2.52–2.44 (m, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 169.9, 161.3, 158.3, 145.3, 144.2, 130.9, 130.1, 129.5, 129.2, 128.6, 128.5, 126.7, 126.6, 126.5, 126.4, 113.77, 113.74, 60.2, 57.4, 55.4, 53.4, 41.9, 37.5. HRMS (ESI–TOF) m/z [M + H]+ calcd for C₃₂H₃₂NO₃ 478.2382, found 478.2381.

(7o): Purified by preparative TLC (petroleum ether/ethyl acetate = 4/1) to afford the product as a white solid in 96% yield (61% ee). The ee was determined by HPLC analysis using a Chiralcel AD-H column (1/1 hexane/i-PrOH; flow rate 1.0 mL/min; λ = 254 nm; tᵣ = 38.05 (major), 9.4 (minor) min).¹H NMR (500 MHz, CDCl₃): δ 7.53 (d, J = 8.0 Hz, 2H), 7.32–7.09 (m, 10H), 7.07–6.85 (m, 6H), 4.43–4.27 (m, 2H), 3.88 (s, 3H), 3.84 (s, 3H), 3.63–3.56 (m, 1H), 3.44–3.35 (m, 1H), 3.14–3.04 (m, 1H), 2.75–2.66 (m, 1H), 2.58–2.48 (m, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 169.9, 161.2, 157.9, 145.4, 144.3, 131.8, 129.6, 129.4, 128.6, 128.4, 127.6, 126.8,
126.7, 126.48, 126.45, 126.42, 120.5, 113.7, 110.5, 60.1, 56.9, 55.43, 55.39, 53.5, 42.0, 32.0.

HRMS (ESI–TOF) m/z [M + H]^+ calcd for C_{32}H_{32}NO_3 478.2382, found 478.2377.

(7p): Purified by preparative TLC (petroleum ether/ethyl acetate = 4/1) to afford the product as a white solid in 88% yield (83% ee). The ee was determined by HPLC analysis using a Chiralcel AD-H column (1/1 hexane/i-PrOH; flow rate 1.0 mL/min; λ = 254 nm; t_R = 28.67 (major), 16.46 (minor) min). ^1H NMR (500 MHz, CDCl_3): δ 7.54 (d, J = 8.6 Hz, 2H), 7.01–6.94 (m, 4H), 6.87 (d, J = 7.4 Hz, 1H), 6.83–6.76 (m, 2H), 4.38–4.27 (m, 2H), 3.88 (s, 3H), 3.77 (s, 3H), 3.63 (d, J = 11.2 Hz, 1H), 3.33 (dd, J = 13.1, 7.9 Hz, 1H), 2.98 (dd, J = 13.1, 8.4 Hz, 1H), 2.71 (dd, J = 12.6, 6.6, 2.0 Hz, 1H), 2.50 (dd, J = 12.3, 10.7 Hz, 1H). ^13C NMR (125 MHz, CDCl_3): δ 169.9, 161.4, 159.6, 145.3, 144.1, 139.8, 129.6, 129.3, 129.1, 128.6, 128.5, 126.7, 126.6, 126.5, 126.4, 122.4, 115.3, 113.7, 112.1, 60.2, 57.3, 55.4, 55.2, 53.4, 42.1, 38.8. HRMS (ESI–TOF) m/z [M + H]^+ calcd for C_{32}H_{32}NO_3 478.2382, found 478.2379.

(7q): Purified by preparative TLC (petroleum ether/ethyl acetate = 4/1) to afford the product as a white solid in 90% yield (78% ee). The ee was determined by HPLC analysis using a Chiralcel AD-H column (1/1 hexane/i-PrOH; flow rate 1.0 mL/min; λ = 254 nm; t_R = 23.73 (major), 18.24 (minor) min). ^1H NMR (500 MHz, CDCl_3): δ 7.85–7.76 (m, 3H), 7.71 (s, 1H), 7.55 (d, J = 8.6 Hz, 2H), 7.22–7.10 (m, 6H), 7.06–6.92 (m, 6H), 4.43–4.31 (m, 2H), 3.89 (s, 3H), 3.56 (d, J = 11.2 Hz, 1H), 3.48 (dd, J = 13.1, 2.9 Hz, 1H), 3.21 (dd, J = 13.2, 8.2 Hz, 1H), 2.75–2.69 (m, 1H), 2.58–2.50 (m, 1H). ^13C NMR (125 MHz, CDCl_3): δ 170.1, 161.4, 145.2, 144.0, 135.7, 133.6, 132.3, 129.6, 129.1, 128.6, 128.5, 128.4, 127.9, 127.7, 127.6, 126.7, 126.6, 126.5, 126.3, 126.0, 125.4, 113.8, 60.2, 57.5, 55.4, 53.4, 42.1, 38.7. HRMS (ESI–TOF) m/z [M + H]^+ calcd for C_{35}H_{32}NO_2 498.2433, found 498.2432.
Copies of 1H NMR and 13C NMR for aminoalkene substrates
1H NMR
300 MHz, CDCl$_3$

13C NMR
75 MHz, CDCl$_3$
1H NMR
300 MHz, CDCl$_3$

13C NMR
75 MHz, CDCl$_3$
1H NMR
300 MHz, CDCl$_3$

13C NMR
75 MHz, CDCl$_3$
$^1\text{H NMR}$
300 MHz, CDCl$_3$

$^{13}\text{C NMR}$
75 MHz, CDCl$_3$
1H NMR
500 MHz, CDCl$_3$

13C NMR
125 MHz, CDCl$_3$
1H NMR
300 MHz, CDCl$_3$

13C NMR
75 MHz, CDCl$_3$
1H NMR
300 MHz, CDCl$_3$

13C NMR
75 MHz, CDCl$_3$
Copies of 1H NMR and 13C NMR for 4-methoxybenzoyl amides
1H NMR 300 MHz, CDCl₃

13C NMR 75 MHz, CDCl₃
13C NMR
75 MHz, CDCl$_3$

13C NMR
75 MHz, CDCl$_3$
1H NMR
300 MHz, CDCl$_3$

13C NMR
75 MHz, CDCl$_3$
1H NMR
500 MHz, CDCl₃

13C NMR
125 MHz, CDCl₃
1H NMR
500 MHz, CDCl$_3$

13C NMR
125 MHz, CDCl$_3$
1H NMR
500 MHz, CDCl$_3$

13C NMR
125 MHz, CDCl$_3$
1H NMR
500 MHz, CDCl$_3$

13C NMR
125 MHz, CDCl$_3$
1H NMR
500 MHz, CDCl$_3$

13C NMR
125 MHz, CDCl$_3$
HPLC profile of 4-methoxybenzoyl amides

Racemic

OD-H, hexane/2-propanol=1:1,1mL/min

Table 2 entry 1
Table 3 entry 1

OD-H, hexane/2-propanol=1:1,1mL/min
Table 2 entry 3
Table 4 entry 1
OD-H, hexane/2-propanol=1:1,1mL/min

Racemic

AS-H, hexane/2-propanol=1:1,1mL/min
Table 3 entry 2

<table>
<thead>
<tr>
<th>峰</th>
<th>保留时间</th>
<th>类型</th>
<th>宽度</th>
<th>峰面积</th>
<th>峰高</th>
<th>峰面积</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11.128</td>
<td>1.2854</td>
<td>6625.4333</td>
<td>85.9074</td>
<td>20.2468</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>35.600</td>
<td>6.1738</td>
<td>2.6079e4</td>
<td>70.4530</td>
<td>79.7532</td>
<td></td>
</tr>
</tbody>
</table>

AS-H, hexane/2-propanol=1:1,1mL/min

Table 4 entry 2

<table>
<thead>
<tr>
<th>峰</th>
<th>保留时间</th>
<th>类型</th>
<th>宽度</th>
<th>峰面积</th>
<th>峰高</th>
<th>峰面积</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11.589</td>
<td>1.5264</td>
<td>6419.0303</td>
<td>70.0511</td>
<td>16.1119</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>37.570</td>
<td>7.3516</td>
<td>3.3249e4</td>
<td>73.5671</td>
<td>83.8181</td>
<td></td>
</tr>
</tbody>
</table>

AS-H, hexane/2-propanol=1:1,1mL/min
Racemic

<table>
<thead>
<tr>
<th>峰</th>
<th>保留时间 [min]</th>
<th>类型</th>
<th>峰宽 [min]</th>
<th>峰面积 [mAU]</th>
<th>峰高 [mAU]</th>
<th>峰面积 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.555</td>
<td>VPB</td>
<td>0.341</td>
<td>1.4704</td>
<td>663.0571</td>
<td>50.0509</td>
</tr>
<tr>
<td>2</td>
<td>22.600</td>
<td>VPB</td>
<td>1.0039</td>
<td>1.4875</td>
<td>222.0930</td>
<td>16.9461</td>
</tr>
</tbody>
</table>

AD-H, hexane/2-propanol=1:1,1mL/min

--

Table 3 entry 3

<table>
<thead>
<tr>
<th>峰</th>
<th>保留时间 [min]</th>
<th>类型</th>
<th>峰宽 [min]</th>
<th>峰面积 [mAU]</th>
<th>峰高 [mAU]</th>
<th>峰面积</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.024</td>
<td>VPB</td>
<td>0.2995</td>
<td>4175.9578</td>
<td>206.9127</td>
<td>72.6165</td>
</tr>
<tr>
<td>2</td>
<td>20.578</td>
<td>VPB</td>
<td>0.8786</td>
<td>1574.7436</td>
<td>26.7664</td>
<td>27.3835</td>
</tr>
</tbody>
</table>

AD-H, hexane/2-propanol=1:1,1mL/min
AD-H, hexane/2-propanol=1:1,1mL/min

<table>
<thead>
<tr>
<th>峰保留时间</th>
<th>类型</th>
<th>峰宽</th>
<th>峰面积</th>
<th>峰高</th>
<th>峰面积</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.610</td>
<td>MM</td>
<td>0.3911</td>
<td>5088.59180</td>
<td>216.87120</td>
<td>70.8984</td>
</tr>
<tr>
<td>22.663</td>
<td>MM</td>
<td>1.0763</td>
<td>2088.70874</td>
<td>32.34435</td>
<td>29.1016</td>
</tr>
</tbody>
</table>

Racemic

<table>
<thead>
<tr>
<th>峰保留时间</th>
<th>类型</th>
<th>峰宽</th>
<th>峰面积</th>
<th>峰高</th>
<th>峰面积</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.027</td>
<td>VV</td>
<td>0.4571</td>
<td>1.56573×10⁻⁴</td>
<td>527.29132</td>
<td>50.0790</td>
</tr>
</tbody>
</table>
Table 3 entry 4

<table>
<thead>
<tr>
<th>峰保留时间</th>
<th>类型</th>
<th>峰宽</th>
<th>峰面积</th>
<th>峰高</th>
<th>峰面积</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.031</td>
<td>VV</td>
<td>0.2908</td>
<td>1515.78555</td>
<td>80.06336</td>
<td>21.8012</td>
</tr>
<tr>
<td>11.151</td>
<td>VB</td>
<td>0.6414</td>
<td>5437.001955</td>
<td>188.44278</td>
<td>79.1998</td>
</tr>
</tbody>
</table>

AD-H, hexane/2-propanol=1:1,1mL/min

Racemic

<table>
<thead>
<tr>
<th>峰保留时间</th>
<th>类型</th>
<th>峰宽</th>
<th>峰面积</th>
<th>峰高</th>
<th>峰面积</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.825</td>
<td>VV</td>
<td>0.4259</td>
<td>9541.03027</td>
<td>346.74686</td>
<td>50.0763</td>
</tr>
<tr>
<td>9.436</td>
<td>VB</td>
<td>0.8917</td>
<td>9511.93945</td>
<td>163.52412</td>
<td>49.5237</td>
</tr>
</tbody>
</table>

AS-H, hexane/2-propanol=2:1,1mL/min
Table 3 entry 6

\[
\text{AS-H, hexane/2-propanol=2:1,1mL/min}
\]

<table>
<thead>
<tr>
<th>峰保留时间</th>
<th>类型</th>
<th>峰宽</th>
<th>峰面积</th>
<th>峰高</th>
<th>峰面积</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.834 min</td>
<td>MM</td>
<td>0.4518</td>
<td>3542.19946</td>
<td>130.65689</td>
<td>24.0490</td>
</tr>
<tr>
<td>9.476 min</td>
<td>VV</td>
<td>0.8794</td>
<td>51186.864</td>
<td>198.32396</td>
<td>75.9510</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>峰保留时间</th>
<th>类型</th>
<th>峰宽</th>
<th>峰面积</th>
<th>峰高</th>
<th>峰面积</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.210 min</td>
<td>VV</td>
<td>0.5509</td>
<td>1.02497e4</td>
<td>287.22165</td>
<td>51.0520</td>
</tr>
</tbody>
</table>

Racemic

\[
\text{AD-H, hexane/2-propanol=1:1,1mL/min}
\]
Table 3 entry 6

AD-H, hexane/2-propanol=1:1,1mL/min

Racemic

AS-H, hexane/2-propanol=1:1,1mL/min
Table 3 entry 7

<table>
<thead>
<tr>
<th>峰</th>
<th>保留时间</th>
<th>类型</th>
<th>峰宽</th>
<th>峰面积</th>
<th>峰高</th>
<th>峰面积</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.613</td>
<td>BB</td>
<td>0.3987</td>
<td>2844.62207</td>
<td>110.7195</td>
<td>17.4406</td>
</tr>
<tr>
<td>2</td>
<td>12.524</td>
<td>VB</td>
<td>1.2315</td>
<td>1.34657e4</td>
<td>166.05386</td>
<td>82.5594</td>
</tr>
</tbody>
</table>

AS-H, hexane/2-propanol=1:1,1mL/min

Table 3 entry 8

<table>
<thead>
<tr>
<th>峰</th>
<th>保留时间</th>
<th>类型</th>
<th>峰宽</th>
<th>峰面积</th>
<th>峰高</th>
<th>峰面积</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14.459</td>
<td>BB</td>
<td>1.1399</td>
<td>1.0927e4</td>
<td>248.16748</td>
<td>50.3524</td>
</tr>
<tr>
<td>2</td>
<td>21.377</td>
<td>BB</td>
<td>2.0271</td>
<td>1.0774e4</td>
<td>80.81483</td>
<td>49.6476</td>
</tr>
</tbody>
</table>

AS-H, hexane/2-propanol=3:1,1mL/min

Racemic
Table 3 entry 8

AS-H, hexane/2-propanol=3:1, 1mL/min

Racemic

AD-H, hexane/2-propanol=1:1, 1mL/min
Table 4 entry 4

AD-H, hexane/2-propanol=1:1, 1mL/min

<table>
<thead>
<tr>
<th>#</th>
<th>retention time (min)</th>
<th>mAU</th>
<th>%</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12.55</td>
<td>0.8710</td>
<td>126.08276</td>
<td>17.2156</td>
</tr>
<tr>
<td>2</td>
<td>25.316</td>
<td>1.3499</td>
<td>688.06354</td>
<td>82.7844</td>
</tr>
</tbody>
</table>

Racemic

<table>
<thead>
<tr>
<th>#</th>
<th>retention time (min)</th>
<th>mAU</th>
<th>%</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12.955</td>
<td>0.5194</td>
<td>236.60399</td>
<td>49.9170</td>
</tr>
<tr>
<td>2</td>
<td>32.772</td>
<td>1.4272</td>
<td>87.92950</td>
<td>50.0830</td>
</tr>
</tbody>
</table>

AD-H, hexane/2-propanol=1:1, 1mL/min
Table 4 entry 5

AD-H, hexane/2-propanol=1:1,1mL/min

<table>
<thead>
<tr>
<th>峰保留时间</th>
<th>类型</th>
<th>峰宽</th>
<th>峰面积</th>
<th>峰高</th>
<th>峰面积</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2816</td>
<td>MM</td>
<td>0.5367</td>
<td>2083.51514</td>
<td>65.44341</td>
<td>10.1487</td>
</tr>
<tr>
<td>2.32584</td>
<td>MM</td>
<td>1.6529</td>
<td>1.84463e+4</td>
<td>185.99442</td>
<td>89.8513</td>
</tr>
</tbody>
</table>

Racemic

AD-H, hexane/2-propanol=1:1,1mL/min

<table>
<thead>
<tr>
<th>峰保留时间</th>
<th>类型</th>
<th>峰宽</th>
<th>峰面积</th>
<th>峰高</th>
<th>峰面积</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.136</td>
<td>BB</td>
<td>0.3756</td>
<td>7534.80518</td>
<td>294.95108</td>
<td>50.3635</td>
</tr>
<tr>
<td>12.075</td>
<td>VV</td>
<td>0.5763</td>
<td>7426.02734</td>
<td>193.29860</td>
<td>49.6365</td>
</tr>
</tbody>
</table>
Table 4 entry 5
AD-H, hexane/2-propanol=1:1,1mL/min

Table 4 entry 6
AD-H, hexane/2-propanol=1:1,1mL/min
Table 4 entry 7

AD-H, hexane/2-propanol=1:1,1mL/min

Racemic

AD-H, hexane/2-propanol=1:1,1mL/min
Table 4 entry 8

AD-H, hexane/2-propanol=1:1,1mL/min

<table>
<thead>
<tr>
<th>Peak #</th>
<th>Retention Time [min]</th>
<th>Peak Width [min]</th>
<th>Peak Area [mAU]</th>
<th>Peak Height [mAU]</th>
<th>Area [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14.443</td>
<td>0.7843</td>
<td>5890.50342</td>
<td>126.17089</td>
<td>16.6107</td>
</tr>
<tr>
<td>2</td>
<td>31.036</td>
<td>1.0851</td>
<td>2.95716×10^4</td>
<td>266.26874</td>
<td>93.3893</td>
</tr>
</tbody>
</table>

Racemic

AD-H, hexane/2-propanol=1:1,1mL/min

[Diagram of Racemic Structure]
Table 4 entry 9

AD-H, hexane/2-propanol=1:1,1mL/min

Racemic

AD-H, hexane/2-propanol=1:1,1mL/min
Table 4 entry 10

<table>
<thead>
<tr>
<th>Peak</th>
<th>Retention Time</th>
<th>Width</th>
<th>Area (%)</th>
<th>Height</th>
<th>Area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.400</td>
<td>0.5499</td>
<td>3332.30444</td>
<td>100.99450</td>
<td>19.4150</td>
</tr>
<tr>
<td>2</td>
<td>38.054</td>
<td>2.1423</td>
<td>1.38304 × 10^4</td>
<td>97.60650</td>
<td>80.5841</td>
</tr>
</tbody>
</table>

AD-H, hexane/2-propanol=1:1,1 mL/min

Racemic

<table>
<thead>
<tr>
<th>Peak</th>
<th>Retention Time</th>
<th>Width</th>
<th>Area (%)</th>
<th>Height</th>
<th>Area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16.559</td>
<td>0.7879</td>
<td>1.806944</td>
<td>337.33194</td>
<td>49.7383</td>
</tr>
<tr>
<td>2</td>
<td>28.951</td>
<td>1.4253</td>
<td>1.825954</td>
<td>192.69735</td>
<td>50.2517</td>
</tr>
</tbody>
</table>

AD-H, hexane/2-propanol=1:1,1 mL/min
Table 4 entry 11

AD-H, hexane/2-propanol=1:1 mL/min

<table>
<thead>
<tr>
<th>#</th>
<th>[min]</th>
<th>[min]</th>
<th>mAU</th>
<th>%</th>
<th>[mAU]</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16.462</td>
<td>0.7975</td>
<td>2761.26758</td>
<td>51.72498</td>
<td>9.6298</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>28.676</td>
<td>1.4388</td>
<td>2.92357e4</td>
<td>304.94705</td>
<td>91.3702</td>
<td></td>
</tr>
</tbody>
</table>

Table 4 entry 11

AD-H, hexane/2-propanol=1:1 mL/min

<table>
<thead>
<tr>
<th>#</th>
<th>[min]</th>
<th>[min]</th>
<th>mAU</th>
<th>%</th>
<th>[mAU]</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16.164</td>
<td>0.9546</td>
<td>7123.69043</td>
<td>113.72398</td>
<td>50.4220</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>23.731</td>
<td>1.1529</td>
<td>7904.43945</td>
<td>91.40789</td>
<td>49.5790</td>
<td></td>
</tr>
</tbody>
</table>

Racemic
Table 4 entry 12

<table>
<thead>
<tr>
<th>#</th>
<th>Retention Time (min)</th>
<th>Type</th>
<th>Peak Width (min)</th>
<th>Peak Area (mAU)</th>
<th>% Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18.240</td>
<td>MM</td>
<td>1.0552</td>
<td>1664.83801</td>
<td>26.29528</td>
</tr>
<tr>
<td>2</td>
<td>23.727</td>
<td>MM</td>
<td>1.2963</td>
<td>1.39006e+4</td>
<td>176.72612</td>
</tr>
</tbody>
</table>

AD=H, hexane/2-propanol=1:1 mL/min
1H NMR monitoring of reactions in Table 4

Table 4, Entry 1

Table 4, Entry 2
Table 4, Entry 3

Table 4, Entry 4
Table 4, Entry 5

Table 4, Entry 6
Table 4, Entry 9

Table 4, Entry 10
Table 4, Entry 11

δ (ppm)

$\begin{array}{c}
t = 1 \text{ h} 10 \text{ min} \\
t = 3 \text{ h} 10 \text{ min} \\
t = 4 \text{ h} 20 \text{ min} \\
t = 6 \text{ h} 20 \text{ min}
\end{array}$

Table 4, Entry 12

δ (ppm)

$\begin{array}{c}
t = 40 \text{ min} \\
t = 1 \text{ h} 55 \text{ min} \\
t = 3 \text{ h} 10 \text{ min} \\
t = 4 \text{ h} 55 \text{ min}
\end{array}$