Supporting Information

Switching of the π-Electronic Conjugations in the Reductions of a Dithienylethene-Fused p-Benzoquinone

Eiji Saito, Takumi Ako, Yasuhiro Kobori* and Akihiko Tsuda*

Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.

1. Materials .. s2
2. Measurements .. s2
3. Methods ... s3
4. Synthesis ... s5
5. X-ray crystal structure analysis of DTQ$^{\text{open}}$.. s9
6. 1H and 13C NMR spectra of DTQ$^{\text{open}}$ and DTQ$^{\text{closed}}$ s11
7. Absorption spectral changes of DTQ$^{\text{open}}$ upon photoirradiation with UV light. s12
8. 1H NMR spectral changes of DTQ$^{\text{closed}}$ upon photoirradiation with visible light. s12
9. 1H NMR spectrum of DTQ$^{\text{closed}}$ after standing for 14 days s13
10. Reversible changes of the photoisomerization in absorption spectroscopy s13
11. Cyclic voltammetry of DTQ$^{\text{closed}}$.. s14
12. Spin densities of DTQ$^{\text{open}}$ and DTQ$^{\text{closed}}$ in DFT calculations s15
13. Cyclic voltammetry of Me$_4$Q .. s17
14. 1H NMR spectral changes of DTQ$^{\text{open}}$ upon mixing with Me$_4$HQ s17
15. H-H NOESY spectra of DTHQ .. s18
16. ESI-FT-MS of DTHQ .. s20
17. 1H NMR spectral changes of DTHQ upon mixing with Ag$_2$O s21
18. 1H and 13C NMR spectra, H-H COSY spectra and ESI-FT-MS s22
19. References .. s27

S1
1. Materials

Unless otherwise noted, reagents and solvents were used as received from Kishida Chemical Co., Ltd. [CH$_2$Cl$_2$ (>98%), AcOEt (>99%), toluene (>99%) and n-hexane (>95%)], Nakarai Tesque, Inc. [KBr (>99%), AcOH (>99%), Na$_2$CO$_3$ (>99%), CuI (>95%) and tributyltin chloride (>97%)], Wako Pure Chemical Industries, Ltd. [NBS (>98%), Na$_2$SO$_4$ (>99%), 18-crown-6 (>98%), Ag$_2$O (>99%), AlCl$_3$ (>98%) and cyclohexane for spectroscopic analysis (>99.8%)], Sigma-Aldrich [Na (>99.5%) and 2,3-dimethylhydroquinone (>97%)], Kanto Chemical Co., Inc. [THF dehydrated stabilizer free, CH$_2$Cl$_2$ dehydrated stabilizer free and 1.6 M n-BuLi hexane solution], Tokyo Chemical Industry Co., Ltd. (TCI) [2,5-dimethylthiophene (>97%), Br$_2$ (>98%), ferrocene (>95%), Pd(PPh$_3$)$_4$ (>97%), KF (>98%), NaBH$_4$ (>95%), tetrabutylammonium perchlorate (>98%) and tetramethyl-1,4-benzoquinone (>98%)] and Cambridge Isotope Laboratories, Inc. (CIL) [CDCl$_3$ (D, 99.8%) + 0.05 % V/V TMS + Silver foil]. Dry toluene was prepared through dehydration with Type 4A molecular sieve. For column chromatography, Wakogel C-300HG (particle size 40–60 µm, silica) was used.

2. Measurements

1H and 13C NMR spectra were recorded on Bruker AVANCE 400 and 500 spectrometers, where chemical shifts (δ in ppm) were determined with respect to tetramethylsilane as the internal standard. Absorption spectra were recorded on a JASCO V-670 UV/VIS/NIR spectrometer equipped with a JASCO ETC-717 temperature/stirring controller. Fourier transform infrared spectra were performed on a JASCO FT/IR 4200. Fourier transform
mass spectrometry was performed on a Thermo Fisher Scientific LTQ Orbitrap Discovery. X-ray diffraction data was collected on a Bruker APEX II Ultra CCD diffractometer. Elemental analysis was performed on a YANACO MT-5 CHN recorder.

3. Methods

Cyclic voltammetry. Electrochemical measurements were made with an ALS 1210A electrochemical analyzer using a glassy carbon working electrode, a platinum wire counter electrode, and an Ag/Ag+ [0.01 M AgNO3, 0.1 M Bu4NClO4 (MeCN)] reference electrode. The scan rate was 500–50 mV s⁻¹. The CV curves were calibrated using the ferrocene/ferrocenium (Fc/Fc⁺) redox couple as an external standard, which was measured under the same conditions before and after the measurement of samples.

EPR measurements. The EPR spectra were recorded on a Bruker EMXPlus system. EPR spectra were measured under nonsaturating microwave power conditions. The amplitude of modulation (0.4 gauss) was chosen to optimize the resolution and the signal-to-noise (S/N) ratio of the observed spectra. The g values were calibrated with a 1,3-bisdiphenylene-2-phenylallyl (BDPA) complex with benzene (1:1) marker. Simulations of EPR signals were performed with WINEPR Simfonia program. The sample was prepared upon mixing DTQ and metallic sodium (1 eq.) and 18-crown-6 (1.5 eq.) in CH2Cl2 under nitrogen atmosphere in a glove box, and then, the sample solution was degassed by freeze-pump-thaw cycle three times.
Theoretical calculations. For calculations of molecular orbitals and the orbital energy of DTQ, the density functional theory (B3LYP/6-311G(d,p) and UB3LYP/6-311+G(d,p), respectively) was employed as implemented in the Gaussian 09 set of programs.¹

Photo-irradiation. Photo-irradiation for the sample solution was demonstrated with a 500 W xenon lamp (USHIO SPAX INC., SX-UID502XAM) equipped with a monochromator (JASCO CT-10T).
4. Synthesis

4.1. Synthetic Scheme

Scheme S1. Reagents and conditions: (a) Br₂ (b) Ag₂O (c) NBS (d) (i) n-BuLi, (ii) tributyltin chloride (e) Pd(PPh₃)₄, reflux (f) AlCl₃ (g) and (h) NaBH₄ (i) Ag₂O
4.2. Synthetic procedures

Compounds 2, 3, 5, 6 and Me₄HQ were prepared by procedures analogous to those reported previously, and unambiguously characterized by means of ¹H NMR spectroscopy.²⁻⁶ DTQ_open was prepared through modifications of the literature methods.⁵

2,3-Bis(2,5-dimethylthiophen-3-yl)-5,6-dimethylbenzoquinone (DTQ_open):

2,5-Dimethyl-3-(tri-n-butylstannyl)thiophen 6 (1.81 g, 4.5 mmol) was added to a solution of 2,3-dibromo-5,6-dimethylbenzoquinone (588 mg, 2 mmol) with Pd(PPh₃)₄ (60 mg) and CuI (10 mg) in 40 mL dried toluene. After stirring under Ar at reflux overnight, the reaction mixture was cooled to room temperature and the solvent was evaporated under vacuum. The residue was dissolved in EtOAc, and concentrated KF aqueous solution (20 mL) was added. After vigorously stirring for 1 h, the precipitate (Bu₃SnF) was filtered and washed with EtOAc. The aqueous layer was back extracted with EtOAc and the organic layers were combined, dried over Na₂SO₄ and evaporated under vacuum. The crude product was purified by silica gel chromatography (CH₂Cl₂ : hexane = 1 : 1) and reprecipitation (CH₂Cl₂ / hexane) in 69 % yield. ¹H NMR (500 MHz, CDCl₃): 6.26 (s, 2H), 2.34 (s, 6H), 2.10 (s, 6H), 1.90 (s, 6H); ¹³C NMR (125 MHz, CDCl₃): 186.77, 140.86, 139.44, 136.69, 135.06, 129.69, 127.26, 15.09, 14.49, 12.66; IR (cm⁻¹, in KBr pellet) 3269, 2966, 2918 2857, 1649, 1609; HRMS: m/z calculated for [M+H]+ (C₃₀H₂₀O₂S₂) 357.0982, found for 357.0982.
2,5,6,9,10a,10b-Hexamethylnaphtho[2,1-b:3,4-b']dithiophene-4,7(10aH,10bH)-dione (DTQ_{closed}): AlCl₃ (42 mg, 0.3 mmol) was added to the solution of compound DTQ_{open} (36 mg, 0.1 mmol) in CH₂Cl₂ (5 ml) at room temperature in the dark. After 10 min, the reaction was complete and water was added to quench the reaction. The organic layer was washed with water, dried over Na₂SO₄ and evaporated under vacuum. The crude product was purified by silica gel chromatography with EtOAc/hexane in 71% yield.

¹H NMR (500 MHz, CDCl₃): 7.46 (q, <i>J</i> = 1.5 Hz, 2H), 2.29 (d, <i>J</i> = 1.0 Hz, 6H), 2.09 (s, 6H), 1.96 (s, 6H); ¹³C NMR (125 MHz, CDCl₃): 181.83, 163.11, 160.36, 145.89, 122.24, 118.30, 69.07, 25.44, 18.90, 13.48; IR (cm⁻¹, in KBr pellet) 3108, 2970, 2924, 2859, 1632, 1611; HRMS: m/z calculated for [M+H]⁺ (C₂₀H₂₀O₂S₂) 357.0982, found 357.0982.

2,3-bis(2,5-dimethylthiophen-3-yl)-5,6-dimethylhydroquinone(DTHQ): To a suspension of DTQ_{open} (107 mg, 0.3 mmol) in THF (1 mL) and MeOH (2 mL), was slowly added NaBH₄ (15 mg, 0.4 mmol). The reaction mixture was stirred at room temperature for 30 min and then cooled to 0°C. Additional MeOH was slowly added until no more gas evolution was observed. A small amount of water was added and the aqueous layer was back extracted with EtOAc, and the organic layers were combined, dried over Na₂SO₄ and evaporated under vacuum. Its purity was sufficient for various measurements without any purification and the yield was 76%. ¹H NMR (500 MHz, CDCl₃): 6.24 (q, <i>J</i> = 1 Hz, 2H), 4.78 (s, 2H), 2.33(s, 6H), 2.26 (s, 6H), 2.05 (s, 6H) and 6.16 (q, <i>J</i> = 1 Hz, 2H), 4.75(s, 2H), 2.30 (s, 6H), 2.25 (s, 6H), 2.13 (s, 6H); ¹³C NMR (125 MHz, CDCl₃): 144.73, 144.67, 136.73, 136.70, 135.25, 135.01, 131.61, 131.41, 127.58, 126.98, 123.35, 123.24, 119.29.
119.26, 15.17, 15.12, 13.81, 13.58, 12.40 12.40; IR (cm\(^{-1}\), in KBr pellet) 3508, 3461, 3216, 2943, 2917, 2859, 1440; elemental analysis: calculated for C:67.00%, H:6.19%,
found for C:66.70%, H:6.27%; HRMS: m/z calculated for [M+H]\(^{+}\) (C\(_{20}\)H\(_{22}\)O\(_{2}\)S\(_{2}\)) 359.1139, found for 359.1135.
5. X-ray crystal structure analysis of DTQ_{open}

![Image](image.png)

Fig. S1 (a) The crystal of DTQ_{open} (b) ORTEP diagram of DTQ_{open}, using 50% probability ellipsoids. X-ray diffraction data were collected on a Bruker APEX II Ultra CCD diffractometer using MoKa radiation (\(\lambda = 0.71073 \text{ Å}\)) at 298 K. The structure was resolved by direct methods and refined by full-matrix least-squares on F\(^2\) (SHELXL97). The positions of all non-hydrogen atoms were refined anisotropically. All hydrogen atoms were placed at ideal positions and included in the refinement. CCDC 1508336 contain the supplementary crystallographic data for this paper.
<table>
<thead>
<tr>
<th>Identification code</th>
<th>Shelxl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C_{20}H_{20}O_{2}S_{2}</td>
</tr>
<tr>
<td>Formula weight</td>
<td>356.48</td>
</tr>
<tr>
<td>Temperature</td>
<td>296(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>Monoclinic, P2(1)/c</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 8.8493(14); α = 90°</td>
</tr>
<tr>
<td></td>
<td>b = 11.2288(18); β = 90.450(2)°</td>
</tr>
<tr>
<td></td>
<td>c = 18.574(3); γ = 90°</td>
</tr>
<tr>
<td>Volume</td>
<td>1845.6(5) Å³</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>Calculated density</td>
<td>1.283 g/cm³</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>0.297 mm⁻¹</td>
</tr>
<tr>
<td>F(0 0 0)</td>
<td>752</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.2 × 0.1 × 0.1 mm</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>2.847–27.548°</td>
</tr>
<tr>
<td>Limiting indices</td>
<td>−11 ≤ h ≤ 8, −14 ≤ k ≤ 12, −24 ≤ l ≤ 21,</td>
</tr>
<tr>
<td>Reflected collected/unique</td>
<td>10339/4245</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>0.883</td>
</tr>
<tr>
<td>Final R indices [I > 2σ(I)]</td>
<td>R1 = 0.0439, wR2 = 0.1321</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0592, wR2 = 0.1500</td>
</tr>
</tbody>
</table>
6. 1H and 13C NMR spectra of DTQ$_{\text{open}}$ and DTQ$_{\text{closed}}$

![NMR Spectra](image)

Fig. S2 1H and 13C NMR spectra (500 MHz and 125 MHz, respectively) of DTQ$_{\text{open}}$ (a, c) and DTQ$_{\text{closed}}$ (b, d) in CDCl$_3$ at room temperature.
7. Absorption spectral changes of DTQ\textsubscript{open} upon photoirradiation with UV light

![Absorption Spectra](image)

Fig. S3 Absorption spectral changes of cyclohexane solutions of DTQ\textsubscript{open} upon photoirradiation with 320 nm light at 20 °C. The spectra were taken on the concentration at 4.0×10^{-5} M.

8. 1H NMR spectral changes of DTQ\textsubscript{closed} upon photoirradiation with visible light

![NMR Spectra](image)

Fig. S4 1H NMR spectral (400 MHz) changes of DTQ\textsubscript{closed} after photoirradiation with visible light ($\lambda > 380$ nm) for 20 min in CDCl$_3$ at room temperature.
9. 1H NMR spectrum of DTQ$_{\text{closed}}$ after standing for 14 days

![NMR Spectrum](image)

Fig. S5 1H NMR spectra of a CDCl$_3$ solution of DTQ$_{\text{closed}}$ before and after standing for 14 days in the dark at room temperature.

10. Reversible changes of the photoisomerization in absorption spectroscopy

![Absorbance Changes](image)

Fig. S6 Reversible changes of the absorbance of DTQ at 550 nm through sequential 3 min photo-irradiations with UV ($\lambda = 320$ nm) and visible light ($\lambda = 550$ nm) at 20°C. [DTQ] = 8.0×10^{-5} M.
11. Cyclic voltammetry of DTQ\textsubscript{closed}

The Cathode’s liner plot; $y = -0.0049x - 1.8263$ ($R^2 = 0.99949$)

The Anode’s liner plot; $y = 0.0039x - 1.7684$ ($R^2 = 0.99497$)

$\Delta E_p = E_{pa} - E_{pc} = -176.84 - (-182.63) = 57.9$ (mV)

$$n = \frac{RT}{nF} = \frac{59}{n} \text{ (25°C)}^8$$

n (= electron number) = 1.02 \approx 1

Fig. S7 Estimation of electron number (n) in cyclic voltammogram of DTQ\textsubscript{closed} from (a) variable scan rate (50-500 mV/s) of cyclic voltammograms, and (b) plots of E_{pa} and E_{pc} values (blue and red circle, respectively) with respect to the square root of scan rate.
12. Spin densities of $\text{DTQ}_{\text{open}}^-$ and $\text{DTQ}_{\text{closed}}^-$ in DFT calculations

Fig. S8 Calculated spin densities of (a) $\text{DTQ}_{\text{open}}^-$ and (b) $\text{DTQ}_{\text{closed}}^-$ in DFT with UB3LYP/6-311+G(d,p) level.

Fig. S8 (continued) Calculated spin densities of (a) DTQ\textsubscript{open} − and (b) DTQ\textsubscript{closed} − in DFT with UB3LYP/6-311+G(d,p) level.
13. Cyclic voltammetry of Me₄Q

![Cyclic voltammetry graph](image)

Fig. S9 A redox profile in cyclic voltammetry (V vs Fc/Fc⁺) of Me₄Q in CH₂Cl₂. Scan rate, 100 mV s⁻¹; working electrode, Pt; supporting electrolyte, 0.1 M Bu₄NClO₄.

14. ¹H NMR spectral changes of DTQ_open upon mixing with Me₄HQ

![¹H NMR spectra](image)

Fig. S10 ¹H NMR spectral (400 MHz) changes of DTQ_open upon mixing with 10 equiv. amounts of Me₄HQ after stirring for 4 h in the dark at room temperature.
15. H-H NOESY spectrum of DTHQ

Fig. S11 H-H NOESY spectrum (400 MHz) of DTHQ in CDCl₃ at room temperature.
Fig. S11 (continued) Magnified H-H NOESY spectrum (400 MHz) of DTHQ in CDCl₃ at room temperature.
Fig. S11 (continued) Magnified H-H NOESY spectrum (400 MHz) of DTHQ in CDCl$_3$ at room temperature.

16. ESI-FT-MS of DTHQ

Fig. S12 Electrospray fourier transform mass spectral profile of a methanol solution of DTHQ.
17. 1H NMR spectral changes of DTHQ upon mixing with Ag$_2$O

Fig. S13 1H NMR spectral (400 MHz) changes of DTHQ upon mixing with 1.2 equiv. amounts of Ag$_2$O after stirring for 3 h at room temperature.
18. 1H and 13C NMR spectra and H–H COSY spectra

Fig. S14 1H and 13C NMR spectra (500 MHz and 125 MHz, respectively) of DTQ$_{\text{open}}$ in CDCl$_3$ at room temperature.
Fig. S15 H-H COSY spectrum (400 MHz) of DTQ\textsubscript{open} in CDCl\textsubscript{3} at room temperature.

Fig. S16 Electrospray fourier transform mass spectral profile of a methanol solution of DTQ\textsubscript{open}.
Fig. S17 1H and 13C NMR spectra (500 MHz and 125 MHz, respectively) of DTQ$_\text{closed}$ in CDCl$_3$ at room temperature.
Fig. S18 H-H COSY spectrum (400 MHz) of DTQ$_{\text{closed}}$ in CDCl$_3$ at room temperature.

Fig. S19 Electrospray fourier transform mass spectral profile of a methanol solution of DTQ$_{\text{closed}}$.

m/z (calc.) 357.0982(100%), 358.1014(23.5%), 359.0967(12.0%)
Fig. S20 1H and 13C NMR spectra (500 MHz and 125 MHz, respectively) of DTHQ in CDCl$_3$ at room temperature.
19. References

