Electronic supplementary information

Optimizing Photovoltaic Performance in CuInS$_2$ and CdS Quantum Dot-Sensitized Solar Cells by using an Agar-Based Gel Polymer Electrolyte

Ellen Raphael, 1,2 Danilo H. Jara, 2 Marco A. Schiavon 1*

1 – Department of Natural Science, University of São João del-Rei – UFSJ, São João del-Rei, Minas Gerais 36301-160, Brazil

2 – Radiation Laboratory, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States

* Marco A. Schiavon - schiavon@uufs.edu.br Department of Natural Science, University of São João del-Rei – UFSJ, São João del-Rei, Minas Gerais 36301-160, Brazil

Figure S1. Structure of agarose
Figure S2. Thermogravimetric curves for agar pure (powder) and agar membrane.

Figure S3. Absorption spectra of TiO$_2$/CuInS$_2$ composite to track the maximum adsorption of CuInS$_2$ deposited by EPD onto TiO$_2$.

Weigh\% \(\times \) Temp. (ºC)

Agar powder \(\bullet \)

Agar membrane \(\bullet \)

Figure S2. Thermogravimetric curves for agar pure (powder) and agar membrane.

Figure S3. Absorption spectra of TiO$_2$/CuInS$_2$ composite to track the maximum adsorption of CuInS$_2$ deposited by EPD onto TiO$_2$.

Figure S4. Current-voltage characteristic of CdS and CuInS$_2$ QDSCs (a) and photocurrent stability (b). The electrolyte and QDs used in both experiments are shown in the inset.