Electronic Supplementary Information

Photoinduced structural changes of cationic azo dyes confined in two dimensional nanospace by two different mechanisms

by

Tomohiko Okada, a Nozomi Nozaki, b Jangwon Seo, c Ji Eon Kwon, c Soo Young Park, c Hideo Hashizume, d Takayoshi Sasaki, d and Makoto Ogawa b,e*

a) Department of Chemistry and Materials Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan.
b) Department of Earth Sciences, Waseda University, 1-6-1 Nishiwaseda, Shinjuku, Tokyo 169-8050, Japan.
c) Center for Supramolecular Optoelectronic Materials, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744, Korea
d) National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
e) Institute of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Tumbol Payupnai, Amphoe Wangchan, Rayong, 21210, Thailand.

* E-mail: makoto.ogawa@vistec.ac.th
Characterization of AzNaph

Chemical Formula: C_{21}H_{24}N_{3}O^{+}

Exact Mass: 334.19
Molecular Weight: 334.44
m/z: 334.19 (100.0%), 335.20 (23.0%), 336.20 (2.7%), 335.19 (1.1%)

ESI-MS: Thermo Finnigan / LCQ

^1^H NMR (300 MHz, DMSO) δ 8.86 (d, J = 8.2 Hz, 1H), 8.18 – 8.02 (m, 4H), 7.83 – 7.58 (m, 4H), 7.26 (d, J = 9.0 Hz, 2H), 4.63 (s, 2H), 3.94 – 3.81 (m, 2H), 3.23 (s, 9H).
Bruker / Avance-300

^1^3^C NMR (125 MHz, DMSO) δ 160.16, 147.35, 146.70, 133.93, 131.12, 130.39, 128.10, 127.15, 126.68, 125.85, 124.88, 122.81, 122.39, 115.48, 114.63, 111.56, 63.98, 62.12, 53.11.
Bruker / Avance-500
Calculation of volume occupying azo dyes in the interlayer space

Occupation volume of the cationic azo dye in the interlayer space of magadiite (per Si$_{14}$O$_{29}$ unit) was obtained by dividing the volume of intercalated azo dye (1) by the volume of the interlayer space (2).

(1) Volume of intercalated azo dye = (amount of the adsorbed cationic dye)×(the molecular volume [nm3])

- AZ$^+$-magadiite: (1.8 mol / Si$_{14}$O$_{29}$)×(0.262 nm3) = 0.472 nm3/Si$_{14}$O$_{29}$
- AzNaph$^+$-magadiite: (0.85 mol / Si$_{14}$O$_{29}$)×(0.335 nm3) = 0.285 nm3/Si$_{14}$O$_{29}$

(2) the volume of the interlayer space = (ideal surface area of magadiite 0.547 nm2/Na$_2$Si$_{14}$O$_{29}$)1×(the gallery height [nm])

- AZ$^+$-magadiite: (0.547 nm2/Na$_2$Si$_{14}$O$_{29}$)×(1.62 nm) = 0.886 nm3/Si$_{14}$O$_{29}$
- AzNaph$^+$-magadiite: (0.547 nm2/Na$_2$Si$_{14}$O$_{29}$)×(1.89 nm) = 1.03 nm3/Si$_{14}$O$_{29}$

Occupation volume of azo dye in the interlayer space is

- AZ$^+$-magadiite: (0.472/0.886)×100 = 53%
- AzNaph$^+$-magadiite: (0.472/1.03)×100 = 28%
Fig. S1. XRD patterns of (a) trans-AZ$^+$- and (b) trans-AzNaph$^+$-magadiite recorded under different humidity of RH = 10, 50, and 90%.