Supplementary

Graphene/cellulose nanocrystals hybrid aerogel with tunable mechanical strength and hydrophilicity fabricated by ambient pressure drying technique

Xiaofang Zhang, Ping Liu, Yongxin Duan, Min Jiang* and Jianming Zhang*

Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology, Qingdao 266042, China.

*Corresponding author. Tel.: +86 532 84022420 Fax: +86 532 84022791.
E-mail: jiangmin@qust.edu.cn (M. Jiang) E-mail: zjm@qust.edu.cn (J. M. Zhang)
Fig. S1- AFM image of the prepared CNC nano-rods spinning coated on mica plate and the height profiles of the selected CNC rod. Inset is the picture of well dispersed CNC suspension.
Fig. S2- TEM images of a cellular wall of the GCHA-50 (left) and its enlargement (right).
Fig. S3 TEM image of GCHA-20.
Fig. S4- Schematic diagram for illustrating the acquisition of Liquid-A and Liquid-B from inside and outside of GCHA gel.
Fig. S5- AFM topographic images of Liquid-B (obtained from PrGO hydrogel containing 20 wt% CNC) on mica.
Fig. S6 - Compression and recovery picture of GCHA-20. The weight is 200g.
Fig. S7- Water contact angle measurements of GA and GCHAs.