Supporting Information

Construction and Properties of the Light-Harvesting Antenna System for Phosphorescent Materials Based on Oligocardofluorenes-Tethered Pt-Porphyrins

Hyeonuk Yeo, Kazuo Tanaka*, Yoshiki Chujo*

Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan

Phone: +81-75-383-2604

Fax: +81-75-383-2605

*To whom correspondence should be addressed: kazuo123@chujo.synchem.kyoto-u.ac.jp; chujo@chujo.synchem.kyoto-u.ac.jp
Experimental section

General. 1H NMR and 13C NMR spectra were measured with a JEOL EX-400 (400 MHz for 1H and 100 MHz for 13C) spectrometer. Coupling constants (J value) are reported in Hertz. In 1H and 13C NMR spectra, tetramethylsilane (TMS) was used as an internal standard. UV–vis spectra were recorded on a Shimadzu UV-3600 spectrophotometer. Fluorescence emission spectra were recorded on a HORIBA JOBIN YVON Fluoromax-4 spectrofluorometer, and an absolute quantum yield was calculated with the integrating sphere on the HORIBA JOBIN YVON Fluoromax-4 spectrofluorometer in chloroform. Fluorescence lifetime analyses were carried out on a HORIBA FluoreCube spectrofluorometer system; excitation at 375 nm was carried out using a UV diode laser (NanoLED-375L).

Materials. Pyrrole and 5,10,15,20-tetraphenylporphyrin (TPP) were obtained commercially, and used without further purification. 4-(2,7-dibromo-9-(4-(octyloxy)phenyl)-9H-fluoren-9-yl)benzaldehyde (1), 9,9,9',9'-tetra-octyl-2,2'-bifluorenyl-7-boronic acid (2) and 9,9,9',9'',9''-hexa-octyl-2,7';2',7''-terfluorenyl-7-boronic acid (3) were prepared according to the literature. In addition, reference molecules, 5FL and 7FL were synthesized by coupling reaction with 9,9'-dioctyl-2,7-dibromofluorene and 2 and 3, respectively. All reaction was performed under argon atmosphere.

H2P-Br. A flask charged with 300 mL of CH$_2$Cl$_2$ was degassed with argon for 1 h, and compound 1 (2.38 g, 3.76 mmol), pyrrole (0.25 g, 3.76 mmol), and trifluoroacetic acid (TFA) (0.43 g, 3.76 mmol) was placed. After stirring for 12 h at room temperature, the solution was added 20 mL of the toluene solution of 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) (1.70 g, 7.53 mmol). After stirring for additional 5 h at room temperature, the solution was evaporated. Flash chromatography on silica gel (1 : 1 = hexane : CH$_2$Cl$_2$, R$_f$ = 0.5), provided H2P-Br (0.39 g, 0.143 mmol, 15%) as a purple powder. 1H NMR (CDCl$_3$, ppm) 8.88 (s, 8H), 8.10 (d, J = 7.8 Hz, 8H), 7.79 (s, 8H), 7.56 (m, 24H), 7.30 (d, J = 8.3 Hz, 8H), 6.87 (d, J = 8.4 Hz, 8H), 3.87 (t, J = 6.3 Hz, 8H), 1.73 (m, 8H), 1.42 (m, 8H), 1.29 (m, 32H),
$0.88 \ (t, J = 6.9 \ Hz, \ 12H), \ -2.79 \ (s, \ 2H)$. 13C NMR (CDCl$_3$, ppm) 158.44, 153.50, 144.24, 140.95, 138.14, 136.12, 134.93, 131.08, 129.60, 129.50, 129.18, 129.01, 128.19, 126.34, 122.06, 121.73, 119.68, 114.62, 67.97, 65.11, 31.80, 29.33, 29.22, 26.06, 22.65, 14.11. HRMS (p-ESI) calcd. for C$_{152}$H$_{134}$Br$_8$N$_4$O$_4$H$: \ m/z \ 2721.3912; \ \text{found:} \ m/z \ 2721.4037.

PtP-Br. The solution containing PhCN (30 mL) was added to PtCl$_2$ (0.138 g, 0.52 mmol) was refluxed for 2 h, and then the solution was added compound H2P-Br (0.25 g, 0.092 mmol). After stirring for overnight at 195 °C, the solution was evaporated. After flash chromatography on silica gel (1 : 1 = hexane : CH$_2$Cl$_2$, $R_f = 0.7$), the product (0.23 g, 0.077 mmol, 84%) was obtained as an orange powder. 1H NMR (CDCl$_3$, ppm) 8.88 (s, 8H), 8.10 (d, $J = 6.3$ Hz, 8H), 7.85 (s, 8H), 7.57 (m, 24H), 7.35 (d, $J = 8.3$ Hz, 8H), 6.89 (d, $J = 8.2$ Hz, 8H), 3.87 (t, $J = 6.1$ Hz, 8H), 1.77 (m, 8H), 1.47 (m, 8H), 1.36 (m, 32H), 0.96 (t, $J = 6.2$ Hz, 12H). 13C NMR (CDCl$_3$, ppm) 158.41, 153.43, 144.39, 140.77, 140.13, 138.09, 136.07, 134.16, 131.05, 130.89, 129.52, 129.14, 126.41, 122.05, 121.92, 121.69, 114.58, 67.92, 65.09, 31.80, 29.31, 29.21, 26.03, 22.65, 14.12. HRMS (p-MALDI) calcd. for C$_{152}$H$_{132}$Br$_8$N$_4$O$_4$Pt : m/z 2912.3315; found: m/z 2912.3342.

PtTPP. The solution containing PhCN (200 mL) was added to PtCl$_2$ (1.00 g, 3.76 mmol) was refluxed for 2 h, and then the solution was added TPP (0.46 g, 0.75 mmol). After stirring for 16 h at 195 °C, the solution was evaporated. After flash chromatography on silica gel (4 : 1 = hexane : CH$_2$Cl$_2$, $R_f = 0.3$), the product (0.36 g, 0.45 mmol, 59%) was obtained as an red powder. 1H NMR (CDCl$_3$, ppm) 8.75 (t, $J = 5.1$ Hz, 8H), 8.15 (d, $J = 7.4$ Hz, 8H), 7.74 (m, 12H).
Compound PtPF5. The solution containing tris(dibenzylideneacetone)dipalladium(0) (Pd$_2$(dba)$_3$) (0.5 mg, 0.0005 mmol), 2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl (S-Phos) (1.5 mg, 0.0037 mmol), cesium carbonate (Cs$_2$CO$_3$) (0.20 g, 0.61 mmol), PtP-Br (36.4 mg, 0.0125 mmol) and 2 (82.3 mg, 0.10 mmol) in 0.5 mL of toluene and 0.5 mL of H$_2$O was stirred at 90 °C for 2 days under argon atmosphere. The pale orange solid (102 mg, 96%) was isolated with reprecipitaion by pouring the chloroform solution of the product into 50 mL of methanol twice. 1H NMR (CDCl$_3$, ppm) 8.80 (s, 8H), 8.06 (d, $J = 7.9$ Hz, 8H), 7.96 (d, $J = 7.6$ Hz, 8H), 7.81–7.68 (m, 48H), 7.67–7.57 (m, 48H), 7.46 (d, $J = 8.3$ Hz, 8H), 7.38–7.26 (m, 32H), 6.93 (d, $J = 8.7$ Hz, 8H), 3.95 (t, $J = 6.6$ Hz, 8H), 2.02 (br, 64H), 1.76 (m, 8H), 1.43 (m, 8H), 1.25 (br, 32H), 1.03 (m, 320H), 0.77 (m, 108H), 0.66 (m, 64H). 13C NMR (CDCl$_3$, ppm) 158.17, 152.61, 151.80, 151.76, 151.44, 150.97, 145.52, 141.36, 140.79, 140.53, 140.47, 140.28, 140.14, 139.90, 139.77, 139.08, 138.01, 134.22, 130.77, 129.44, 126.95, 126.75, 126.27, 126.14, 126.03, 124.97, 122.91, 121.44, 121.33, 120.57, 119.97, 119.86, 119.68, 114.46, 67.95, 65.22, 55.30, 55.14, 40.35, 31.80, 31.76, 31.68, 31.65, 30.00, 29.36, 29.23, 29.17, 29.12, 26.11, 23.80, 22.55, 22.51, 22.46, 14.07, 14.02, 13.98, 13.93. LRMS (MALDI-TOF MS) calcd. for C$_{616}$H$_{780}$N$_4$O$_4$Pt : m/z 8500; found: m/z 8499.

PtPF7. The solution containing Pd$_2$(dba)$_3$ (0.5 mg, 0.0005 mmol), S-Phos (1.5 mg, 0.0037 mmol), Cs$_2$CO$_3$ (0.20 g, 0.61 mmol), PtP-Br (30 mg, 0.01 mmol) and 3 (100 mg, 0.08 mmol) in 0.5 mL of toluene and 0.5 mL of H$_2$O was stirred at 90 °C for 2 days under argon atmosphere. The pale orange solid (110 mg, 92%) was isolated with reprecipitaion by pouring the chloroform solution of the product into 50 mL of methanol twice. 1H NMR (CDCl$_3$, ppm) 8.83 (s, 8H), 8.08 (d, $J = 7.8$ Hz, 8H), 7.97 (d, $J = 7.7$ Hz, 8H), 7.78 (m, 60H), 7.65 (m, 76H), 7.48 (d, $J = 7.0$ Hz, 8H), 7.39–7.28 (m, 32H), 6.95 (d, $J = 8.4$ Hz, 8H), 3.96 (br, 8H), 2.06 (br, 96H), 1.77 (br, 8H), 1.45 (br, 8H), 1.26 (br, 32H), 1.09 (m, 480H), 0.80 (m, 188H), 0.68 (m, 64H). 13C NMR (CDCl$_3$, ppm) 158.19, 152.65, 151.78, 151.46, 151.01, 145.59, 141.39, 140.81, 140.49, 140.31, 140.16, 139.98, 139.10, 138.00, 134.21, 130.83, 129.48, 126.98, 126.78, 126.14, 126.03, 124.98, 122.93, 122.07, 121.47, 120.60, 119.92, 119.86, 119.70, 114.48, 67.97, 65.25,
LRMS (MALDI-TOF MS) calcd. for $\text{C}_{848}\text{H}_{1100}\text{N}_4\text{O}_4\text{Pt}$: m/z 11609; found: m/z 11608.
Figure S1. Excitation spectra of the LHA molecules and PtTPP (detection wavelength: 670 nm, in chloroform, 10^{-7} M).
Figure S2. Excitation spectra of the LHA molecules and PtTPP (detection wavelength: 670 nm, in 2-Me-THF, 10^{-7} M and in -196 °C).
Figure S3. Excitation spectra of the LHA molecules and the composites (detection wavelength: 670 nm, in film states).
Figure S4. PL spectra of the LHA molecules in the film state (excitation wavelength: 373 nm, solid line: in Ar-bubbled H$_2$O, dotted line: in H$_2$O).
References
