Support Information

Effect of Alkylthiophene Spacers and Fluorination on the Optoelectronic Properties of 5,10-Bis(alkylthien-2-yl)dithieno[2,3-d:2′,3′-d′]benzo[1,2-b:4,5-b′]dithiophene-alt-benzothiadiazole Derivatives Copolymers

Pengzhi Guo,a Jingbiao Sun,a Shuo Sun,b Jianfeng Li,a Junfeng Tong,b Chuang Zhao,b Liangjian Zhu,a Peng Zhang,a Chunyan Yang,a Yangjun Xia,a,c

a Key Lab of Optoelectronic Technology and Intelligent Control of Education Ministry, Lanzhou Jiaotong University, Gansu Province, Lanzhou, 730070, China.

b National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China

c Centre for Polymers and Organic Solids, University of California, Santa Barbara, CA 93106-9510
Contents

1. Thermogravimetric characteristics of the copolymers ... 3
2. Normalized absorption of the PDTBDT-BT and PDTBDT-FBT ... 3
3. Temperature-dependant photoluminescence spectra of the PDTBDT-DTBT and PDTBDT-DTFBT in dilute solution .. 4
4. Temperature-dependant absorption spectra of the PDTBDT-DTBT and PDTBDT-DTFBT in film 5
5. Temperature-dependant photoluminescence spectra of the PDTBDT-DTBT and PDTBDT-DTBT and PDTBDT-DTFBT in films .. 6
6. Temperature-dependant absorption spectra of the PDTBDT-DTBT (a) and PDTBDT-DTFBT (b) in dilute solution .. 7
7. Electrochemical characteristics of the PDTBDT-BT and PDTBDT-FBT .. 8
8. The method used to calculate the HOMO and LUMO levels for the polymers 9
9. Optimized geometries of each trimer models (Top view, (a), Side view, (b)) and surface plots and energy levels of frontier orbitals (c) of PDTBDT-DTBT .. 10
10. Optimized geometries of each trimer models (Top view, (a), Side view, (b)) and surface plots and energy levels of frontier orbitals (c) of PDTBDT-DTFBT .. 11
11. Optimized geometries of each trimer models and surface plots (a) and energy levels of frontier orbitals of PDTBDT-BT (b) ... 12
12. Optimized geometries of each trimer models and surface plots (a) and energy levels of frontier orbitals of PDTBDT-BT (b) ... 13
13. 2D-GIWAXs characteristics of the PDTBDT-DTBT ... 14
14. 2D GIWAXs characteristics of the PDTBDT-DTBT ... 15
15. J₀.⁵ – V characteristics of the copolymers in the hole-only devices with configuration of ITO/PEDOT: PSS/copolymers/Au .. 17
16. AFM topography images of the PDTBDT-DTBT/PC₇₁BM (a, without DIO, b with 3% DIO) with weight ratio of 1:2 ... 18
17. AFM topography images of PDTBDT-DTFBT/PC₇₁BM (a, without DIO, b with 3% DIO) with weight ratio of 1:2 ... 19
18. Diagram of the energy levels of the copolymers and PC₇₁BM and calculated Vₒc from empirical equation ... 20
1. Thermogravimetric characteristics of the copolymers.

Fig. S1. Thermogravimetric curves of the copolymers.

2. Normalized absorption of the PDTBDT-BT and PDTBDT-FBT.

Fig. S2. Normalized absorption of PDTBDT-BT and PDTBDT-FBT in dilute solution and film.
3. Temperature-dependant photoluminescence spectra of the PDTBDT-DTBT and PDTBDT-DTFBT in dilute solution.

Fig. S3. Normalized temperature-dependent photoluminescence spectra of PDTBDT-DTBT (a) and PDTBDT-DTFBT (b) in dilute solution.

Fig. S4. Normalized temperature-dependent UV–vis spectra of PDTBDT-DTBT (a) and PDTBDT-DTFBT in solid states.
5. Temperature-dependant photoluminescence spectra of the PDTBDT-DTBT and PDTBDT-DTBT and PDTBDT-DTFBT in films.

Fig. S5. Normalized temperature-dependent photoluminescence spectra of PDTBDT-DTBT (a) and PDTBDT-DTFBT (b) in solid states.
6. Temperature-dependant absorption spectra of the PDTBDT-DTBT (a) and PDTBDT-DTFBT (b) in dilute solution.

Fig. S6. Temperature-dependent UV−vis spectra of PDTBDT-DTBT (a) and PDTBDT-DTFBT (b) in chlorobenzene solution.
7. Electrochemical characteristics of the PDTBDT-BT and PDTBT-FBT.

Fig. S7. Cyclic voltammetry curves of PDTBDT-BT and PDTBDT-FBT measured in a nitrogen-saturated solution of 0.1 M tetrabutylammonium hexafluorophosphate in acetonitrile with glass carbon and Ag/AgNO₃ electrodes as the working and reference electrodes, respectively.
The method used to calculate the HOMO and LUMO levels for the polymers

Electrochemical cyclic voltammetry measurements were carried out using a CHI660 electrochemical workstation equipped with a glass carbon working electrode, Ag/AgNO$_3$ electrode as the reference electrode, and a Pt wire counter electrode. The measurements were done in anhydrous acetonitrile with tetrabutylammonium hexafluorophosphate (0.1 M) as the supporting electrolyte under an argon atmosphere at a scan rate of 50 mV/s. The potential of the Ag/AgNO$_3$ reference electrode was internally calibrated using the ferrocene/ferrocenium redox couple (Fc/Fc$^+$), which has a known reduction potential of -4.8 eV. The HOMO and LUMO energy levels were calculated by the following equations. $E_{\text{HOMO}} = -(E_{\text{ox}} + 4.71)$ (eV) and $E_{\text{LUMO}} = -(E_{\text{red}} + 4.71)$ (eV), the $E_{1/2}$ of ferrocene/ferrocenium (Fc/Fc$^+$) was observed at 0.09 V vs Ag/Ag$^+$.

Figure S8. Electrochemical cyclic voltammetry curves of the Fc/Fc$^+$.

![Figure S8. Electrochemical cyclic voltammetry curves of the Fc/Fc$^+$.](image)
9. Optimized geometries of each trimer models (Top view, (a), Side view, (b)) and surface plots and energy levels of frontier orbitals (c) of PDTBDT-DTBT.

Fig. S9. Optimized geometries of each trimer models (Top view, (a), Side view, (b)) and surface plots and energy levels of frontier orbitals (c) of PDTBDT-DTBT.
10. Optimized geometries of each trimer models (Top view, (a), Side view, (b)) and surface plots and energy levels of frontier orbitals (c) of PDTBDT-DTFBT.

Fig. S10. Optimized geometries of each trimer models (Top view, (a), Side view, (b)) and surface plots and energy levels of frontier orbitals (c) of PDTBDT-DTFBT.
11. Optimized geometries of each trimer models and surface plots (a) and energy levels of frontier orbitals of PDTBDT-BT (b).

Fig. S11. Optimized geometries of each trimer models and surface plots (a) and energy levels of frontier orbitals of PDTBDT-BT (b).
12. Optimized geometries of each trimer models and surface plots (a) and energy levels of frontier orbitals of PDTBDT-BT (b).

Figure S12. Optimized geometries of each trimer models (a) and surface plots and energy levels of frontier orbitals of PDTBDT-FBT (b).
13. 2D-GIWAXs characteristics of the PDTBDT-DTBT
Fig. S13. 2D-GIWAXs patterns and corresponding out-of-plane and in-plane line-cut profiles of PDTBDT-DTBT pristine film

14. 2D GIWAXs characteristics of the PDTBDT-DTBT
Fig. S14. 2D-GIWAXs patterns and corresponding out-of-plane and in-plane line-cut profiles of PDTBDT-DTFBT pristine film
15. $J^{0.5}-V$ characteristics of the copolymers in the hole-only devices with configuration of ITO/PEDOT: PSS/copolymers/Au.

Fig. S15. $J^{0.5}-V$ characteristics of the copolymers in the hole-only devices with configuration of ITO/PEDOT: PSS/copolymers/Au.
16. AFM topography images of the PDTBDT-DTBT/PC$_{71}$BM (a, without DIO, b with 3% DIO) with weight ratio of 1:2.

Fig. S16. AFM topography images of the PDTBDT-DTBT/PC$_{71}$BM (a, without DIO, b with 3% DIO) with weight ratio of 1:2.
17. AFM topography images of PDTBDT-DTFBT/PC_{71}BM (a, without DIO, b with 3% DIO) with weight ratio of 1:2.

Fig. S17. AFM topography images of PDTBDT-DTFBT/PC_{71}BM (a, without DIO, b with 3% DIO) with weight ratio of 1:2.
18. Diagram of the energy levels of the copolymers and PC$_{71}$BM and calculated V_{oc} from empirical equation.

Fig. S18. Diagram of the energy levels of the copolymers and PC$_{71}$BM and calculated V_{oc} from empirical equation.