Electronic Supporting Information Materials

The optimization of donor to acceptor feed ratios with the aim to get black-to-transmissive switching polymers based on isoindigo as the electron deficient moiety

Huihui Xie, Min Wang, Lingqian Kong, Yan Zhang, Xiuping Ju, Jinsheng Zhao*

*Shandong Key laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng, 252059, P.R. China.

Liaocheng People’s Hospital, Liaocheng, 252000, China.

Dongchang College, Liaocheng University, Liaocheng, 252059, P.R. China

Correspondence to: Jinsheng Zhao (E-mail: j.s.zhao@163.com)
Figure S1. 1H NMR spectrum of 3,3-Bis-decyl-3,4-dihydro-2H-thieno[3,4-b] [1,4]dioxepine (a), CDCl$_3$ Solvent peak and water peak were marked by ‘x’, ‘y’ respectively, 13C NMR spectrum of 3,3-Bis-decyl-3,4-dihydro- 2H-thieno[3,4-b][1,4]dioxepine (b), CDCl$_3$ Solvent peak were marked by ‘x’.
Figure S2. 1H NMR spectrum of 6,8-Dibromo-3,3-bis-decyl-3,4-dihydro- 2H-thieno[3,4-b][1,4]dioxepine (a), CHCl$_3$ Solvent peak and water speak were marked by 'x', 'y' respectively, 13C NMR spectrum of 6,8-Dibromo-3,3-bis-decyl- 3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepine (b), CHCl$_3$ Solvent peak were marked by 'x'.

Figure S3. 1H NMR spectrum of P1(a), P2(b), P3(c), CHCl$_3$ Solvent and tetramethylsilane peaks were marked by ‘x’, ‘y’ respectively.
Figure S4. Electrochromic switching of P1(a, b, c), with an interval of 10 s, 5 s, 3 s, 2 s, 1s.
Figure S5. Electrochromic switching of P3 (a, b, c), with an interval of 10 s, 5 s, 3 s, 2 s, 1 s.
Figure S6. The $L^* a^* b^*$ value of P1 (a), P3(b) with applied voltage from 0 V to 1.5 V.