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Section S.1.  Powder X-ray diffraction patterns on H- and Cu-zeolites 
 

 
Figure S.1. XRD patterns of H-form (dark) and Cu-form (light) AEI, CHA, and RTH zeolites. 
Diffraction patterns are normalized so that the maximum peak intensity in each pattern is unity.  
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Section S.2. Argon adsorption isotherms on H- and Cu-zeolites  
 

 

Figure S.2. Ar adsorption isotherms (87 K) on H-form (filled) and Cu-form (open) RTH, CHA 
and AEI zeolites. Adsorption isotherms are vertically offset (CHA: 160 cm3 g-1, RTH: 320 cm3 g-

1) for clarity. 
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Section S.3.  27Al MAS NMR spectra on H- and Cu-zeolites 

27Al MAS NMR spectra were measured on the H- and Cu-forms of the three zeolites in 

this study, AEI (Figure S.3.1), CHA (Figure S.3.2) and RTH (Figure S.3.3), in order to estimate 

the distribution of framework (Alf) and extra-framework (Alex) Al species. NMR lines centered 

at 60 ppm were present for tetrahedral Al for RTH, and a small shoulder for penta-coordinated 

Al1,2 was present for CHA and AEI.  The tetrahedral along with distorted tetrahedral and penta-

coordinated Al NMR lines were integrated together to estimate the total number of Alf species, 

although we recognize difficulties in quantifying Alf content from NMR spectra, because some 

species can reversibly change between tetrahedral and octahedral coordination depending on the 

conditions of the measurement3–5, and some extraframework alumina may also contain 

tetrahedrally-coordinated Al.1,6 The Al NMR lines centered at 0 ppm for octahedral Al were 

taken to reflect Alex species. Spectra of H- and Cu- form zeolites show Al incorporated 

predominantly into tetrahedral framework positions, with Alf/Altot values given in Table 2 of the 

main text.  

  



 
 
Figure S.3.1. 27Al MAS NMR spectra of H-AEI and Cu-AEI. 
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Figure S.3.2. 27Al MAS NMR spectra of H-CHA and Cu-CHA. 
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Figure S.3.3. 27Al MAS NMR spectra of H-RTH and Cu-RTH. 
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Section S.4. IR Spectra of H-RTH Before and After NH3 Exposure 

 In situ IR experiments were performed to monitor interactions of H+ sites in H-RTH 

(Si/Al = 15) with NH3. H-RTH was pressed into a self-supporting wafer (~0.40 g) and placed 

within an operando FTIR cell, using a procedure that has been described elsewhere.7 The sample 

was heated to 723 K and held for 2 h under 50 mL min-1 of 10% O2 (99.5%, Indiana Oxygen) 

and balance N2 (99.999% UHP, Indiana Oxygen), and then cooled to 433 K under flow (10% O2 

and balance N2) to give the spectra (dark traces) in Figure S.4 (OH stretching region shown in 

Fig. S.4.1, NH bending region shown in Fig. S.4.2). The H-RTH wafer was then saturated in 

flowing NH3 (350 ppm, 3 h, 433 K), to give the spectra (light traces) in Figure S.4. After NH3 

saturation, Brønsted OH bands disappeared completely, and new IR bands for NH4
+ bending 

vibrations at 1425 cm-1 appeared concomitantly. These data indicate that all H+ sites in H-RTH 

were titrated by NH3, and that the H+/Alf value of 0.61 measured in NH3 TPD experiments does 

not reflect a fraction of H+ sites that were inaccessible to NH3. 



 

Figure S.4.1.  IR spectra (OH stretching region: 3400-3900 cm-1) of H-RTH at 433 K before 
(dark) and after (light) NH3 saturation.  
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Figure S.4.2.  IR spectra (N-H bending region: 1300-2500 cm-1) of H-RTH at 433 K before 
(dark) and after (light) NH3 saturation. 
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Section S.5. NH3 TPD on Cu-zeolites 
 
 

 

Figure S.5. NH3 desorption rates as a function of temperature on fresh Cu-form after SCR (solid), 
aged Cu-form before SCR (dashed) and aged Cu-form after SCR (dotted) on CHA, RTH, and 
AEI zeolites.  
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