Supporting Information

Combining batch and continuous flow setups in the end-to-end synthesis of naturally occurring curcuminoids

Christian C. Carmona-Vargas, a Leandro de C. Alves, b Timothy J. Brocksom a and Kleber T. de Oliveira a*

a Universidade Federal de São Carlos, Departamento de Química, 13565-905, Sao Carlos, SP, Brazil. b Accert Chemistry and Biotechnology, Rua Alfredo Lopes 1717 Sala 7E, 13560-460, São Carlos, SP, Brazil.

*email: kleber.oliveira@ufscar.br; www.lqbo.ufscar.br

Contents

Figure S1: (Top). Asia Syringe Pump with the PTFE loop module. (Bottom) PFA Flow Reactors 1 and 2 inside the GC oven. 2

Figure S2: (Top). Backpressure regulator of 2.7 bar at the exit of the Flow Reactor #2. (Bottom) Flow setup for liquid-liquid extraction using the Schott® Flask. 3

Figure S3: (Top). Overview of the setup. (Bottom) Curcumin (1) obtained on a 7.50 g scale (63% yield) after 7h of process intensification. 4

Figure S4: Flow setup for the synthesis of bis-demethoxycurcumin (2). (Left) Combined batch and continuous flow protocols. (Right) End-to-end continuous method. 5

Figure S5: End-to-end synthesis of intermediate 9 (Left) and curcuminoid 3 (Right). 6

Figure S6: 1H NMR (400 MHz) of curcumin (1) in DMSO-d 6 7

Figure S7: 1H NMR (400 MHz) of bisdemethoxycurcumin (2) in DMSO-d 6 7

Figure S8: 1H NMR (400 MHz) of diketone 4 in DMSO-d 6 8

Figure S9: 1H NMR (400 MHz) of demethoxycurcumin (3) in DMSO-d 6 8
1. Pump 1
2. Ethyl acetate
3. PFA loop containing acetylacetone, boron anhydride, vanillin, tributyl borate and ethyl acetate.
4. Pump 2
5. n-butylamine in ethyl acetate
6. Input – Reactor #1
7. Output – Reactor 1
8. Mixer (T-piece)
9. Input – Reactor #2
10. GC Oven (door opened)
11. Reactor #1 (PTFE) (10 mL)
12. Reactor #2 (PFA) (40 mL)
13. Output - Reactor #2

Figure S1. (Top). Asia Syringe Pump with the PTFE loop module. (Bottom) PFA Flow Reactors 1 and 2 inside the GC oven.
Figure S2. (Top). Backpressure regulator of 2.7 bar at the exit of the Flow Reactor #2. (Bottom) Flow setup for liquid-liquid extraction using the Schott® Flask.

13. Output – Reactor #2
14. Liquid-liquid extraction (Schott® Flask)
15. HCl Reservoir
16. Peristaltic Pump
Figure S3. (Top). Overview of the setup. (Bottom) Curcumin (1) obtained on a 7.50 g scale (63% yield) after 7h of process intensification.
Figure S4. Flow setup for the synthesis of bis-demethoxycurcumin (2). (Left) Combined batch and continuous flow protocols. (Right) End-to-end continuous method.
Figure S5: End-to-end synthesis of intermediate 9 (Left) and curcuminoid 3 (Right).
Figure S6. 1H NMR (400 MHz) of curcumin (1) in DMSO-d_6.

Figure S7. 1H NMR (400 MHz) of bis-demethoxycurcumin (2) in DMSO-d_6.

Figure S8. 1H NMR (400 MHz) of diketone 9 in DMSO-d_6.
Figure S9. 1H NMR (400 MHz) of demethoxycurcumin (3) in DMSO-d_6