Supporting information for

Conjugated Polymer-Enhanced Enantioselectivity in Fluorescent Sensing

Xuepeng Zhang, Chao Wang, Pan Wang, Jiajun Du, Guoqing Zhang,* and Lin Pu*

[a] X. Zhang, P. Wang, J. Du, Prof. G. Zhang
Hefei National Laboratory for Physical Sciences at the Microscale
University of Science and Technology of China
96 Jinzhai Road, Hefei, Anhui, 230026, China
[b] C. Wang, Prof. L. Pu
Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904-4319, U.S.A.
E-mail: lp6n@virginia.edu

Figure S1. 1H NMR spectrum of polymer (S)-6 in CDCl$_3$.
Figure S2. Fluorescent spectra of (S)-3 (5.0 x 10^{-5} M) + Zn(II) (1.0 x 10^{-4} M) in CH$_2$Cl$_2$ with 1 equiv of (R)- and (S)-leucinol (a). Fluorescent intensities at $\lambda = 515$ nm versus leucinol concentrations (b). ($\lambda_{ex} = 355$ nm, slit: 3/3 nm).
Figure S3. Fluorescent spectra of (S)-6 (5.0 x 10^{-5} M) + Zn^{II} (1.0 x 10^{-4} M) in CH_2Cl_2 toward various concentrations of (R)- (a) and (S)-7 (b). (λ_ex = 355 nm, slit: 3/3 nm).
Figure S4. Fluorescent spectra of (R)-6 (5.0 x 10^{-5} M) + Zn^{II} (1.0 x 10^{-4} M) in CH$_2$Cl$_2$ toward various concentrations of (R)- (a) and (S)-7 (b). Fluorescence intensities versus leucinol concentrations (error bars are from three independent measurements) (c). (λ_{ex} = 355 nm, slit: 3/3 nm).
Figure S5. Fluorescent response of (S)-6 + SA (1:2, total concentration: 1.5×10^{-4} M in CH$_2$Cl$_2$) + Zn(II) (3.0×10^{-4} M) toward amino alcohol 7 at various total concentrations with varying percentages of (R)-7 ($\lambda_{ex} = 355$ nm, slit: 3/3 nm).
Figure S6. Fluorescent response of (R)-6+SA (1:2, total concentration: 1.5×10^{-4} M in CH$_2$Cl$_2$) + ZnII (3.0×10^{-4} M) towards (R)- and (S)-7 ($\lambda_{ex} = 355$ nm, slits: 3/3 nm).
Figure S7. Fluorescent spectra of (S)-6 (5.0 x 10^{-5} M) + Zn^{II} (1.0 x 10^{-4} M) in CH$_2$Cl$_2$ toward various concentrations of (R)-(a) and (S)-8 (b). Fluorescence intensities versus concentrations of amino alcohol 8 (error bars are from three independent measurements) (c). ($\lambda_{ex} = 355$ nm, slit: 3/3 nm).
Figure S8. Fluorescent spectra of (S)-6 (5.0 x 10^{-5} M) + Zn^{II} (1.0 x 10^{-4} M) in CH$_2$Cl$_2$ toward various concentrations of (R)- (a) and (S)-9 (b). Fluorescence intensities versus concentrations of amino alcohol 9 (error bars are from three independent measurements) (c). (λ_{ex} = 355 nm, slit: 3/3 nm).
Figure S9. Fluorescent spectra of (S)-6 (5.0 x 10^{-5} M) + Zn^{II} (1.0 x 10^{-4} M) in CH_{2}Cl_{2} toward various concentrations of (R)- (a) and (S)-10 (b). Fluorescence intensities versus concentrations of amino alcohol 10 (error bars are from three independent measurements) (c). (λ_{ex} = 355 nm, slit: 3/3 nm).
Figure S10. Fluorescent spectra of (S)-6 (5.0 x 10^{-5} M) + Zn^{II} (1.0 x 10^{-4} M) in CH_{2}Cl_{2} toward various concentrations of (R)- (a) and (S)-11 (b). Fluorescence intensities versus concentrations of amino alcohol 11 (error bars are from three independent measurements) (c). (\lambda_{ex} = 355 nm, slit: 3/3 nm).
Figure S11. Fluorescent spectra of (S)-3 (5.0 x 10^{-5} M) + ZnII (1.0 x 10^{-4} M) in CH\textsubscript{2}Cl\textsubscript{2} toward various concentrations of (R)- (a) and (S)-7 (b). (\textlambda_{ex} = 355 \text{ nm}, \text{ slit: 3/3 nm}).
Figure S12. Fluorescent spectra of (S)-3 (5.0×10^{-5} M) + ZnII (1.0×10^{-4} M) in CH$_2$Cl$_2$ toward various concentrations of (R)- (a) and (S)-8 (b). Fluorescence intensities versus concentrations of amino alcohol 8 (c). (λ_{ex} = 355 nm, slit: 3/3 nm).
Figure S13. Fluorescent spectra of (S)-3 (5.0 x 10^{-5} M) + Zn^{II} (1.0 x 10^{-4} M) in CH_2Cl_2 toward various concentrations of (R-) (a) and (S)-9 (b). Fluorescence intensities versus concentrations of amino alcohol 9 (c). (λ_{ex} = 355 nm, slit: 4/4 nm).
Figure S14. Fluorescent spectra of (S)-3 (5.0 x 10^{-5} M) + Zn^{II} (1.0 x 10^{-4} M) in CH₂Cl₂ toward various concentrations of (R)- (a) and (S)-10 (b). Fluorescence intensities versus concentrations of amino alcohol 10 (c). (λₑₓ = 355 nm, slit: 4/4 nm).
Figure S15. Fluorescent spectra of (S)-3 (5.0 x 10^{-5} M) + Zn^{II} (1.0 x 10^{-4} M) in CH_{2}Cl_{2} toward various concentrations of (R)- (a) and (S)-11 (b). Fluorescence intensities versus concentrations of amino alcohol 11 (c). (λ_{ex} = 355 nm, slit: 4/4 nm).
Figure S16. 1H NMR spectrum of (S)-4 in CDCl$_3$.

NMR Spectra
Figure S17. 13C NMR spectrum of (S)-4 in CDCl$_3$.
Figure S18. 1H NMR spectrum of (R)-4 in CDCl$_3$.
Figure S19. 13C NMR spectrum of (R)-4 in CDCl$_3$.
Figure S20. 1H NMR spectrum of (S)-6 in CDCl$_3$+D$_2$O (1% v/v).
Figure S21. 1H NMR spectrum of (R)-6 in CDCl$_3$.
Figure S22. 13C spectrum of (S)-6 in CDCl$_3$.
Figure S23. 13C spectrum of (R)-6 in CDCl$_3$.
Figure S24. HRMS spectrum of (S)-4.
Figure S25. HRMS spectrum of (R)-4.
Figure S26. GPC data for (S)-6.
Figure S27. GPC data for (R)-6.