Copper-Promoted Site-Selective Carbonylation of sp3 and sp2 C–H Bonds with Nitromethane

Xuesong Wu, Jinmin Miao, Yanrong Li, Guigen Li* and Haibo Ge *

Table of Contents

General Information .. S2
Structures of Starting Materials ... S3
Procedure for the Preparation of Starting Materials (3e, 5 and 6) ... S5
General Procedure for Carbonylation of Aliphatic Amides ... S7
General Procedure for Carbonylation of Aromatic Amides .. S7
Analytical Data of Products .. S8
Deuterium Labeling Experiments ... S17
Parallel KIE Experiments .. S19
O18 Labeling Experiments ... S20
References .. S21
1H, 13C and 19F NMR Spectra ... S22
General Information

1H, 13C and 19F NMR spectra were recorded on a Bruker 500 MHz NMR Fourier transform spectrometer (500 MHz and 125 MHz, respectively) using tetramethylsilane as an internal reference, and chemical shifts (δ) and coupling constants (J) were expressed in ppm and Hz, respectively. Infrared spectra were obtained using a Thermo Nicolet IR 330 spectrometer. Mass (MS) analysis were obtained using an Agilent 1100 series LC/MSD system with Electrospray Ionization (ESI). All the solvents and commercially available reagents were purchased from commercial sources and used directly. Starting materials $1a-l$ and $[D_3]-1d$ were prepared according to literature procedures.1 $3a-d$, $3f-t$ and $[D_5]-3a$ were prepared based on reported reaction protocol.2
Structures of Starting Materials

1a

1b

1c

1d

1e

1f

1g

1h

1i

1j

1k

1l

[D₃]-1d

3a

3b

3c

3d

3e

3f

3g

3h
Procedure for the Preparation of Starting Materials (3e, 5 and 6)

To a 100 mL flask was added benzoic acid derivative (5.0 mmol), 8-aminoquinoline (0.72 g, 5.0 mmol), DCC (1.20 g, 6.0 mmol), DMAP (0.20 g, 1.5 mmol) and dry CH₂Cl₂ (10 mL). The mixture was stirred at room temperature for 12h. Then the reaction mixture was diluted by CH₂Cl₂ (40 mL) and filtered. The filtrate was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel, eluting with EtOAc/Hexane (1:20 ~ 1:10, v/v), to afford corresponding amide.

Compound 3e, white solid. ¹H NMR (500 MHz, CDCl₃) δ 10.73 (s, 1H), 8.91 (dd, J = 7.5, 1.4 Hz, 1H), 8.85 (dd, J = 4.2, 1.7 Hz, 1H), 8.18 (dd, J = 8.3, 1.6 Hz, 1H), 8.06 (d, J = 8.7 Hz, 2H), 7.71 (d, J = 8.5 Hz, 2H), 7.62 – 7.51 (m, 3H), 7.48 (dd, J = 8.2, 4.2 Hz, 1H), 2.23 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 168.6, 165.0, 148.5, 141.4, 138.9, 136.5, 134.7, 130.7, 128.6, 128.2, 127.6, 121.9, 121.8, 119.5, 116.6, 24.9; IR (neat) ν 3459, 3334, 3262, 3177, 3098, 1712, 1635, 1540, 1489, 1324, 1279, 843, 824, 790, 760, 675; Ms (ESI): m/z = 306.1 [M+H]⁺.

Compound 5, white solid. ¹H NMR (500 MHz, CDCl₃) δ 10.62 (s, 1H), 8.95 (dd, J = 6.3, 2.7 Hz, 1H), 8.82 (dd, J = 4.2, 1.7 Hz, 1H), 8.20 (dd, J = 8.3, 1.6 Hz, 1H), 8.02 (dd, J = 7.8, 0.7 Hz, 1H), 7.87 (dd, J = 7.7, 1.0 Hz, 1H), 7.79 – 7.75 (m, 1H), 7.68 – 7.64 (m, 1H), 7.63 – 7.57 (m, 2H), 7.48 (dd, J = 8.3, 4.2 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 163.3, 148.6, 139.2, 138.8, 136.6, 135.0, 134.1, 132.9, 131.5, 128.2, 128.1, 127.5, 122.6, 122.0, 117.6, 117.4, 111.9; IR (neat) ν 3336, 3052, 2927,
A 100 mL Schlenk tube was charged with Cs$_2$CO$_3$ (716 mg, 2.2 mmol), 3 Å molecular sieves (400 mg), Pd$_2$dba$_3$ (45.6 mg, 0.050 mmol), and XPhos (57.2 mg, 0.12 mmol). Nitromethane (20.0 mL) was added, followed by addition of compound 3t (654 mg, 2.0 mmol). The tube was evacuated and filled with N$_2$, and stirred rigorously at 50 °C for 24h. The reaction mixture was allowed to cool to rt, diluted with CH$_2$Cl$_2$ (40 mL), and washed with saturated aq. NH$_4$Cl (2 x 20 mL). The aqueous layer was extracted with CH$_2$Cl$_2$ (2 x 30 mL). The combined organic layers were washed with brine, dried over Na$_2$SO$_4$, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel, eluting with EtOAc/Hexane (1:10, v/v), to afford compound 6 (434 mg, 69 % yield).3

Compound 6, yellow oil. 1H NMR (500 MHz, CDCl$_3$) δ 10.53 (s, 1H), 8.87 (dd, $J = 6.1, 2.9$ Hz, 1H), 8.82 (dd, $J = 4.2, 1.7$ Hz, 1H), 8.20 (dd, $J = 8.3, 1.7$ Hz, 1H), 7.95 (dd, $J = 7.4, 1.5$ Hz, 1H), 7.67 – 7.57 (m, 4H), 7.53 – 7.46 (m, 2H), 5.94 (s, 2H); 13C NMR (125 MHz, CDCl$_3$) δ 166.4, 148.6, 138.9, 136.8, 136.6, 134.5, 133.0, 131.5, 130.6, 129.4, 128.2, 127.9, 127.5, 122.4, 122.0, 117.0, 76.9; IR (neat) ν 3340, 3060, 2921, 1669, 1557, 1526, 1482, 1373, 1327, 1267, 901, 826, 792, 699; Ms (ESI): $m/z = 308.1$ [M+H]$^+$.

S6
General Procedure for Carbonylation of Aliphatic Amides

A 50 mL Schlenk tube was charged with amide (1, 0.30 mmol), Cu(OAc)$_2$ (54.5 mg, 0.30 mmol), K$_2$S$_2$O$_8$ (162 mg, 0.60 mmol), PhCO$_2$Na (21.6 mg, 0.15 mmol), neutral alumina (60 mg), DMPU (72 μL, 77 mg, 0.60 mmol), 1,4-dioxane (0.9 mL), isopropanol (1.1 mL) and nitromethane (1.0 mL). The tube was capped and stirred rigorously at 165 °C for 24h. Then the reaction mixture was cooled to room temperature, diluted with EtOAc (20 mL) and filtered. The filtrate was washed with water (10 mL), brine (10 mL), dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel, eluting with EtOAc/Hexane (1:4 ~ 1:1, v/v), to afford corresponding product 2.

General Procedure for Carbonylation of Aromatic Amides

A 50 mL Schlenk tube was charged with amide (3, 0.30 mmol), Cu(OAc)$_2$ (5.4 mg, 0.030 mmol), Ag$_2$CO$_3$ (165 mg, 0.60 mmol), Na$_2$HPO$_4$ (42.6 mg, 0.30 mmol), DMA (2.0 mL) and nitromethane (0.5 mL). The tube was capped and stirred rigorously at 140 °C for 24h. Then the reaction mixture was cooled to room temperature, diluted with EtOAc (30 mL) and filtered. The filtrate was washed with water (3 × 10 mL), brine (10 mL), dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel, eluting with EtOAc/Hexane (1:4 ~ 1:1, v/v), to afford corresponding product 4.
Analytical Data of Products

Compound 2a, colorless oil, yield: 68%. (This compound is known.4) 1H NMR (500 MHz, CDCl\textsubscript{3}, a mixture of atropisomers in ration 1.0:1.0, the minor one is marked with an *) \(\delta 8.86 – 8.83 \text{ (m, 1H)}, 8.18 – 8.15 \text{ (m, 1H)}, 7.90 \text{ (dd, } J = 8.0, 1.6 \text{ Hz, 1H)}, 7.63 – 7.56 \text{ (m, 2H)}, 7.43 – 7.39 \text{ (m, 1H)}, 2.95 \text{ (dd, } J = 18.4, 1.1 \text{ Hz, 1H)}, 2.76 \text{ (dd, } J = 18.4, 2.4 \text{ Hz, 1H)}, 2.05 – 1.35 \text{ (m, 6H)}, 1.16 \text{ (t, } J = 7.5 \text{ Hz, 3H)}, 1.07 – 0.99 \text{ (m, 3H)}; \text{Ms (ESI): } m/z = 297.1 [M+H]^{+}.

Compound 2b, colorless oil, yield: 73%. (This compound is known.4) 1H NMR (500 MHz, CDCl\textsubscript{3}) \(\delta 8.86 \text{ (dd, } J = 4.2, 1.7 \text{ Hz, 1H)}, 8.18 \text{ (dd, } J = 8.3, 1.7 \text{ Hz, 1H)}, 7.95-7.89 \text{ (m, 1H)}, 7.65 – 7.60 \text{ (m, 2H)}, 7.42 \text{ (dd, } J = 8.3, 4.2 \text{ Hz, 1H}), 2.95 \text{ (d, } J = 18.0 \text{ Hz, 1H)}, 2.82 \text{ (d, } J = 18.0 \text{ Hz, 1H)}, 1.61 \text{ (s, 3H)}, 1.50 \text{ (s, 3H)} \text{); Ms (ESI): } m/z = 255.1 [M+H]^{+}.

Compound 2c, colorless oil, yield: 72%. (This compound is known.4) 1H NMR (500 MHz, CDCl\textsubscript{3}, a mixture of atropisomers in ration 1.1:1.0, the minor one is marked with an *) \(\delta 8.86 – 8.82 \text{ (m, 1H)}, 8.18 – 8.14 \text{ (m, 1H)}, 7.92 – 7.87 \text{ (m, 1H)}, 7.63 – 7.58 \text{ (m, 2H)}, 7.42 – 7.38 \text{ (m, 1H)}, 2.86 \text{ (dd, } J = 31.0, 18.2 \text{ Hz, 2H)}, 2.06 – 1.88 \text{ (m, 1H)}, 1.86 – 1.71 \text{ (m, 1H)}, 1.58 \text{ (s, 3H)}, 1.06 \text{ (t, } J = 7.5 \text{ Hz, 3H)}; 8.87 – 8.83 \text{ (m, 1H)}^{*}, 8.18 – 8.14 \text{ (m, 1H)}^{*}, 7.92 – 7.87 \text{ (m, 1H)}^{*}, 7.63 – 7.58 \text{ (m, 2H)}^{*}, 7.42 – 7.38 \text{ (m,}
1H)*, 3.03 (d, J = 18.2 Hz, 1H)*, 2.68 (d, J = 18.2 Hz, 1H)*, 2.06 – 1.88 (m, 1H)*, 1.86 – 1.71 (m, 1H)*, 1.47 (s, 3H)*, 1.17 (t, J = 7.5 Hz, 3H)*; Ms (ESI): m/z = 269.1 [M+H]+.

Compound 2d, colorless oil, yield: 69%. (This compound is known.4) 1H NMR (500 MHz, CDCl₃) δ 8.84 (dd, J = 4.1, 1.7 Hz, 1H), 8.16 (dd, J = 8.3, 1.7 Hz, 1H), 7.90 (dd, J = 7.9, 1.7 Hz, 1H), 7.64 – 7.56 (m, 2H), 7.40 (dd, J = 8.3, 4.2 Hz, 1H), 2.94 (d, J = 18.4 Hz, 1H), 2.75 (d, J = 18.4 Hz, 1H), 2.05 – 1.87 (m, 2H), 1.86 – 1.73 (m, 2H), 1.17 (t, J = 7.5 Hz, 3H), 1.05 (t, J = 7.4 Hz, 3H); Ms (ESI): m/z = 283.1 [M+H]+.

Compound 2e, white solid, yield: 61%. (This compound is known.4) 1H NMR (500 MHz, CDCl₃, a mixture of atropisomers in ration 1.4:1.0, the minor one is marked with an *) δ 8.81 (dd, J = 4.2, 1.7 Hz, 1H), 8.16 (dd, J = 8.2, 1.4 Hz, 1H), 7.92 – 7.87 (m, 1H), 7.65 – 7.55 (m, 2H), 7.42 – 7.37 (m, 1H), 7.33 – 7.18 (m, 5H), 3.05 – 2.69 (m, 4H), 2.26 – 1.78 (m, 4H), 1.07 (t, J = 7.5 Hz, 3H); 8.84 (dd, J = 4.2, 1.7 Hz, 1H)*, 8.16 (dd, J = 8.2, 1.4 Hz, 1H)*, 7.92 – 7.87 (m, 1H)*, 7.65 – 7.55 (m, 2H)*, 7.42 – 7.37 (m, 1H)*, 7.33 – 7.18 (m, 5H)*, 3.05 – 2.69 (m, 4H)*, 2.26 – 1.78 (m, 4H)*, 1.19 (t, J = 7.5 Hz, 3H)*; Ms (ESI): m/z = 359.1 [M+H]+.
Compound 2f, yellow oil, yield: 32%. (This compound is known.4) 1H NMR (500 MHz, CDCl$_3$, a mixture of atropisomers in ration 2.3:1.0, the minor one is marked with an *) δ 8.85 (dd, $J = 4.2$, 1.7 Hz, 1H), 8.15 – 8.12 (m, 1H), 7.88 (dd, $J = 8.3$, 1.3 Hz, 1H), 7.55 – 7.51 (m, 1H), 7.41 – 7.23 (m, 6H), 7.16 (dd, $J = 7.3$, 1.4 Hz, 1H), 3.34 (d, $J = 13.3$ Hz, 1H), 3.05 – 2.98 (m, 1H), 2.83 – 2.75 (m, 2H), 1.71 (s, 3H); 8.79 (dd, $J = 4.2$, 1.7 Hz, 1H)*, 8.17 – 8.14 (m, 1H)*, 7.92 – 7.88 (m, 1H)*, 7.62 – 7.59 (m, 2H)*, 7.41 – 7.23 (m, 6H)*, 3.41 (d, $J = 13.7$ Hz, 1H)*, 3.18 (d, $J = 18.1$ Hz, 1H)*, 3.05 – 3.00 (m, 1H)*, 2.57 (d, $J = 18.1$ Hz, 1H)*, 1.53 (s, 3H)*; Ms (ESI): $m/z = 331.1$ [M+H]*.

![Compound 2g](image)

Compound 2g, white solid, yield: 50%. (This compound is known.4) 1H NMR (500 MHz, CDCl$_3$, a mixture of atropisomers in ration 1.1:1.0, the minor one is marked with an *) δ 8.91 – 8.89 (m, 1H), 8.21 (dd, $J = 8.3$, 1.7 Hz, 1H), 7.97 – 7.92 (m, 1H), 7.80 – 7.75 (m, 1H), 7.71 – 7.62 (m, 2H), 7.58 – 7.53 (m, 1H), 7.48 – 7.40 (m, 3H), 7.36 – 7.31 (m, 1H), 3.39 (d, $J = 18.2$ Hz, 1H), 3.12 (d, $J = 18.4$ Hz, 1H), 2.01 (s, 3H); 8.91 – 8.89 (m, 1H)*, 8.21 (dd, $J = 8.3$, 1.7 Hz, 1H)*, 7.97 – 7.92 (m, 1H)*, 7.80 – 7.75 (m, 1H)*, 7.71 – 7.62 (m, 2H)*, 7.58 – 7.53 (m, 1H)*, 7.48 – 7.40 (m, 3H)*, 7.36 – 7.31 (m, 1H)*, 3.37 (d, $J = 18.3$ Hz, 1H)*, 3.26 (d, $J = 18.1$ Hz, 1H)*, 1.93 (s, 3H)*; Ms (ESI): $m/z = 317.1$ [M+H]*.

![Compound 2h](image)

Compound 2h, colorless oil, yield: 72%. (This compound is known.4) 1H NMR (500 MHz, CDCl$_3$, a mixture of atropisomers in ration 2.9:1.0, the minor one is marked with an *) δ 8.84 (dd, $J = 4.2$, 1.6 Hz, 1H), 8.22 – 8.18 (m, 1H), 7.97 – 7.91 (m, 1H), 7.66 – 7.59 (m, 2H), 7.46 – 7.41 (m, 1H), 3.32 (d, $J = 18.4$ Hz, 1H), 2.99 (d, $J = 18.4$ Hz, 1H), 1.86 (s, 3H); 8.87 (dd, $J = 4.2$, 1.6 Hz, 1H)*, 8.19 – 8.16 (m, 1H)*, 7.97 – 7.91 (m, 2H)*, 7.66 – 7.59 (m, 1H)*, 7.46 – 7.41 (m, 1H)*, 3.47 (d, $J = 18.4$ Hz,
1H)*, 2.84 (d, $J = 18.4$ Hz, 1H)*, 1.75 (s, 3H)*; 19F NMR (471 MHz, CDCl$_3$) δ -74.3, -74.6; Ms (ESI): $m/z = 309.1$ [M+H]$^+$.

Compound 2i, yellow oil, yield: 53%. (This compound is known.4) 1H NMR (500 MHz, CDCl$_3$, a mixture of atropisomers in ration 2.5:1.0, the minor one is marked with an *) δ 8.90 – 8.84 (m, 1H), 8.25 – 8.19 (m, 1H), 7.97 – 7.91 (m, 1H), 7.68 – 7.60 (m, 2H), 7.47 – 7.42 (m, 1H), 4.32 (q, $J = 7.1$ Hz, 2H), 3.42 (d, $J = 18.1$ Hz, 1H), 2.97 (d, $J = 18.0$ Hz, 1H), 1.84 (s, 3H), 1.35 (t, $J = 7.1$ Hz, 3H); 8.90 – 8.84 (m, 1H)*, 8.25 – 8.19 (m, 1H)*, 7.97 – 7.91 (m, 1H)*, 7.68 – 7.60 (m, 2H)*, 7.47 – 7.42 (m, 1H)*, 4.32 (q, $J = 7.1$ Hz, 2H)*, 3.66 (d, $J = 18.0$ Hz, 1H)*, 2.81 (d, $J = 18.0$ Hz, 1H)*, 1.76 (s, 3H)*, 1.35 (t, $J = 7.1$ Hz, 3H)*; Ms (ESI): $m/z = 313.1$ [M+H]$^+$.

Compound 2j, colorless oil, yield: 61%. (This compound is known.4) 1H NMR (500 MHz, CDCl$_3$) δ 8.86 (dd, $J = 4.2$, 1.7 Hz, 1H), 8.17 (dd, $J = 8.3$, 1.7 Hz, 1H), 7.93 – 7.88 (m, 1H), 7.65 – 7.59 (m, 2H), 7.41 (dd, $J = 8.3$, 4.2 Hz, 1H), 2.99 (d, $J = 18.0$ Hz, 1H), 2.85 (d, $J = 18.0$ Hz, 1H), 2.47 – 2.38 (m, 1H), 2.34 – 2.26 (m, 1H), 2.03 – 1.93 (m, 3H), 1.88 – 1.78 (m, 3H); Ms (ESI): $m/z = 281.1$ [M+H]$^+$.

S11
Compound 2k, colorless oil, yield: 63%. (This compound is known.4) 1H NMR (500 MHz, CDCl\textsubscript{3}) \(\delta\) 8.84 (dd, \(J = 4.2, 1.7\) Hz, 1H), 8.17 (dd, \(J = 8.3, 1.6\) Hz, 1H), 7.93 – 7.88 (m, 1H), 7.64 – 7.59 (m, 2H), 7.41 (dd, \(J = 8.3, 4.2\) Hz, 1H), 2.98 (d, \(J = 18.1\) Hz, 1H), 2.80 (d, \(J = 18.1\) Hz, 1H), 2.04 – 1.95 (m, 3H), 1.91 – 1.84 (m, 2H), 1.79 – 1.71 (m, 2H), 1.50 – 1.38 (m, 3H); Ms (ESI): \(m/z = 295.1\) [M+H]+.

![Structure of 2k](image)

Compound 2l, colorless oil, yield: 54%. (This compound is known.4) 1H NMR (500 MHz, CDCl\textsubscript{3}) \(\delta\) 8.85 (dd, \(J = 4.2, 1.7\) Hz, 1H), 8.17 (dd, \(J = 8.3, 1.7\) Hz, 1H), 7.93 – 7.88 (m, 1H), 7.64 – 7.58 (m, 2H), 7.42 (dd, \(J = 8.3, 4.2\) Hz, 1H), 2.96 (d, \(J = 18.0\) Hz, 1H), 2.81 (d, \(J = 18.0\) Hz, 1H), 2.29 – 2.22 (m, 1H), 2.21 – 2.15 (m, 1H), 2.11 – 2.05 (m, 1H), 1.95 – 1.82 (m, 3H), 1.70 – 1.53 (m, 6H); Ms (ESI): \(m/z = 309.2\) [M+H]+.

![Structure of 2l](image)

Compound 4a, white solid, yield: 86%. (This compound is known.5) 1H NMR (500 MHz, CDCl\textsubscript{3}) \(\delta\) 8.85 (dd, \(J = 4.2, 1.7\) Hz, 1H), 8.22 (dd, \(J = 8.3, 1.7\) Hz, 1H), 8.02 – 7.93 (m, 3H), 7.83 – 7.78 (m, 2H), 7.75 (dd, \(J = 7.3, 1.4\) Hz, 1H), 7.69 – 7.64 (m, 1H), 7.43 (dd, \(J = 8.3, 4.2\) Hz, 1H); Ms (ESI): \(m/z = 275.1\) [M+H]+.

![Structure of 4a](image)
Compound 4b, white solid, yield: 87%. (This compound is known.5) 1H NMR (500 MHz, CDCl\textsubscript{3}) \(\delta\) 8.84 (dd, \(J = 4.2, 1.7\) Hz, 1H), 8.21 (dd, \(J = 8.3, 1.7\) Hz, 1H), 7.94 (dd, \(J = 8.2, 1.4\) Hz, 1H), 7.87 (d, \(J = 7.6\) Hz, 1H), 7.80 (s, 1H), 7.74 (dd, \(J = 7.3, 1.4\) Hz, 1H), 7.68 - 7.63 (m, 1H), 7.60 - 7.56 (m, 1H), 7.42 (dd, \(J = 8.3, 4.2\) Hz, 1H), 2.55 (s, 3H); Ms (ESI): \(m/z = 289.1\) [M+H]+.

\[
\text{O} \quad \text{N} \quad \text{O} \\
\text{Bu} \quad \text{4c}
\]

Compound 4c, white solid, yield: 90%. 1H NMR (500 MHz, CDCl\textsubscript{3}) \(\delta\) 8.83 (dd, \(J = 4.2, 1.7\) Hz, 1H), 8.19 (dd, \(J = 8.3, 1.7\) Hz, 1H), 8.02 (d, \(J = 1.3\) Hz, 1H), 7.95 – 7.87 (m, 2H), 7.81 (dd, \(J = 7.9, 1.7\) Hz, 1H), 7.72 (dd, \(J = 7.3, 1.4\) Hz, 1H), 7.67 – 7.62 (m, 1H), 7.40 (dd, \(J = 8.3, 4.2\) Hz, 1H), 1.40 (s, 9H); 13C NMR (125 MHz, CDCl\textsubscript{3}) \(\delta\) 168.4, 168.1, 158.9, 151.0, 144.4, 136.3, 132.7, 131.3, 130.4, 130.1, 129.9, 129.6, 129.4, 126.2, 123.7, 121.9, 121.1, 35.9, 31.3; IR (neat) \(\nu\) 2964, 2870, 1779, 1720, 1643, 1501, 1396, 1237, 1103, 885, 825, 792, 747, 691; Ms (ESI): \(m/z = 331.1\) [M+H]+.

\[
\text{MeO} \quad \text{O} \quad \text{N} \\
\text{4d}
\]

Compound 4d, white solid, yield: 91%. (This compound is known.5) 1H NMR (500 MHz, CDCl\textsubscript{3}) \(\delta\) 8.85 (d, \(J = 2.8\) Hz, 1H), 8.21 (dd, \(J = 8.3, 1.6\) Hz, 1H), 7.94 (dd, \(J = 8.2, 1.0\) Hz, 1H), 7.88 (d, \(J = 8.3\) Hz, 1H), 7.74 (dd, \(J = 7.3, 1.4\) Hz, 1H), 7.66 (dd, \(J = 8.1, 7.4\) Hz, 1H), 7.46 (d, \(J = 2.3\) Hz, 1H), 7.42 (dd, \(J = 8.3, 4.2\) Hz, 1H), 7.25 (dd, \(J = 8.3, 2.3\) Hz, 1H), 3.95 (s, 3H); Ms (ESI): \(m/z = 305.1\) [M+H]+.

\[
\text{AcHN} \quad \text{O} \quad \text{N} \\
\text{4e}
\]
Compound 4e, white solid, yield: 90%. 1H NMR (500 MHz, CDCl$_3$) δ 9.34 (s, 1H), 8.85 (dd, $J = 4.2, 1.6$ Hz, 1H), 8.24 (dd, $J = 8.3, 1.6$ Hz, 1H), 8.01 – 7.88 (m, 3H), 7.75 (dd, $J = 10.9, 4.9$ Hz, 2H), 7.66 (dd, $J = 8.1, 7.4$ Hz, 1H), 7.45 (dd, $J = 8.3, 4.2$ Hz, 1H), 1.92 (s, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 169.5, 168.0, 167.8, 150.9, 144.6, 144.2, 136.9, 133.6, 130.8, 129.9, 129.7, 129.5, 126.6, 126.3, 125.0, 124.1, 122.2, 114.3, 24.3; IR (neat) ν 3283, 3151, 3085, 2928, 2856, 2251, 1772, 1700, 1645, 1521, 1395, 1279, 1106, 912, 885, 818, 789, 745, 626; Ms (ESI): $m/z = 332.1$ [M+H]$^+$.

![4e](image)

Compound 4f, white solid, yield: 74%. 1H NMR (500 MHz, CDCl$_3$) δ 8.85 (dd, $J = 4.2, 1.7$ Hz, 1H), 8.23 (dd, $J = 8.3, 1.7$ Hz, 1H), 8.06 – 8.02 (m, 1H), 7.97 (dd, $J = 8.2, 1.4$ Hz, 1H), 7.86 – 7.81 (m, 1H), 7.75 (dd, $J = 7.3, 1.4$ Hz, 1H), 7.68 (dd, $J = 8.2, 7.3$ Hz, 1H), 7.63 – 7.60 (m, 1H), 7.45 (dd, $J = 8.3, 4.2$ Hz, 1H); 13C NMR (125 MHz, CDCl$_3$) δ 166.7, 166.5, 153.8 (q, $J_{COCF} = 1.8$ Hz), 151.1, 144.2, 136.4, 134.9, 130.4, 130.3, 123.0, 129.6, 129.5, 126.4, 126.3, 125.9, 122.2, 120.4 (q, $J_{CF} = 260.0$ Hz), 116.2; 19F NMR (471 MHz, CDCl$_3$) δ -57.7; IR (neat) ν 3071, 2925, 2854, 1785, 1726, 1616, 1501, 1398, 1213, 1175, 912, 884, 831, 744; Ms (ESI): $m/z = 359.1$ [M+H]$^+$.

![4f](image)

Compound 4g, white solid, yield: 77%. (This compound is known.4) 1H NMR (500 MHz, CDCl$_3$) δ 8.85 (dd, $J = 4.2, 1.7$ Hz, 1H), 8.23 (dd, $J = 8.3, 1.7$ Hz, 1H), 8.02 – 7.96 (m, 2H), 7.75 (dd, $J = 7.3, 1.4$ Hz, 1H), 7.71 – 7.65 (m, 2H), 7.51 – 7.42 (m, 2H); 19F NMR (471 MHz, CDCl$_3$) δ -101.7; Ms (ESI): $m/z = 293.1$ [M+H]$^+$.

![4g](image)

Compound 4h, white solid, yield: 90%. 1H NMR (500 MHz, CDCl$_3$) δ 9.34 (s, 1H), 8.85 (dd, $J = 4.2, 1.6$ Hz, 1H), 8.24 (dd, $J = 8.3, 1.6$ Hz, 1H), 8.01 – 7.88 (m, 3H), 7.75 (dd, $J = 10.9, 4.9$ Hz, 2H), 7.66 (dd, $J = 8.1, 7.4$ Hz, 1H), 7.45 (dd, $J = 8.3, 4.2$ Hz, 1H), 1.92 (s, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 169.5, 168.0, 167.8, 150.9, 144.6, 144.2, 136.9, 133.6, 130.8, 129.9, 129.7, 129.5, 126.6, 126.3, 125.0, 124.1, 122.2, 114.3, 24.3; IR (neat) ν 3283, 3151, 3085, 2928, 2856, 2251, 1772, 1700, 1645, 1521, 1395, 1279, 1106, 912, 885, 818, 789, 745, 626; Ms (ESI): $m/z = 332.1$ [M+H]$^+$.

![4h](image)
Compound **4h**, pale yellow solid, yield: 70%. (This compound is known.\(^5\)) \(^1^H\) NMR (500 MHz, CDCl\(_3\)) \(\delta\) 8.85 (dd, \(J = 4.2, 1.7\) Hz, 1H), 8.23 (dd, \(J = 8.3, 1.7\) Hz, 1H), 8.14 (d, \(J = 1.4\) Hz, 1H), 7.99 – 7.93 (m, 2H), 7.86 (dd, \(J = 7.9, 0.4\) Hz, 1H), 7.74 (dd, \(J = 7.3, 1.5\) Hz, 1H), 7.68 (dd, \(J = 8.1, 7.4\) Hz, 1H), 7.45 (dd, \(J = 8.3, 4.2\) Hz, 1H); Ms (ESI): \(m/z = 353.0\) [M+H]\(^+\).

![4i](image)

Compound **4i**, white solid, yield: 60%. (This compound is known.\(^4\)) \(^1^H\) NMR (500 MHz, CDCl\(_3\)) \(\delta\) 8.84 (dd, \(J = 4.2, 1.7\) Hz, 1H), 8.23 (dd, \(J = 8.3, 1.7\) Hz, 1H), 7.99 – 7.96 (m, 2H), 7.94 (dd, \(J = 8.0, 0.5\) Hz, 1H), 7.79 – 7.73 (m, 1H), 7.68 (dd, \(J = 8.1, 7.4\) Hz, 1H), 7.45 (dd, \(J = 8.3, 4.2\) Hz, 1H); Ms (ESI): \(m/z = 309.0\) [M+H]\(^+\).

![4j](image)

Compound **4j**, white solid, yield: 51%. (This compound is known.\(^5\)) \(^1^H\) NMR (500 MHz, CDCl\(_3\)) \(\delta\) 8.84 (dd, \(J = 4.2, 1.7\) Hz, 1H), 8.28 (s, 1H), 8.25 (dd, \(J = 8.3, 1.7\) Hz, 1H), 8.14 (d, \(J = 7.8\) Hz, 1H), 8.10 (d, \(J = 7.8\) Hz, 1H), 8.00 (dd, \(J = 8.2, 1.4\) Hz, 1H), 7.77 (dd, \(J = 7.3, 1.4\) Hz, 1H), 7.72 – 7.68 (m, 1H), 7.47 (dd, \(J = 8.3, 4.2\) Hz, 1H); \(^1^9^F\) NMR (471 MHz, CDCl\(_3\)) \(\delta\) -62.9; Ms (ESI): \(m/z = 343.1\) [M+H]\(^+\).

![4k](image)

Compound **4k**, yellow solid, yield: 46%. (This compound is known.\(^5\)) \(^1^H\) NMR (500 MHz, CDCl\(_3\)) \(\delta\) 8.86 – 8.80 (m, 2H), 8.70 (dd, \(J = 8.1, 2.0\) Hz, 1H), 8.26 (dd, \(J = 8.3, 4.2\) Hz, 1H); Ms (ESI): \(m/z = 353.0\) [M+H]\(^+\).
8.3, 1.7 Hz, 1H), 8.20 (d, J = 8.2 Hz, 1H), 8.01 (dd, J = 8.2, 1.4 Hz, 1H), 7.78 (dd, J = 7.3, 1.4 Hz, 1H), 7.73 – 7.69 (m, 1H), 7.48 (dd, J = 8.3, 4.2 Hz, 1H); Ms (ESI): m/z = 320.1 [M+H]+.

Compound 4l, pale yellow solid, yield: 37%. (This compound is known.5) 1H NMR (500 MHz, CDCl\textsubscript{3}) \(\delta\) 8.83 (dd, J = 4.2, 1.7 Hz, 1H), 8.30 – 8.23 (m, 2H), 8.15 – 8.09 (m, 2H), 8.01 (dd, J = 8.2, 1.4 Hz, 1H), 7.76 (dd, J = 7.3, 1.4 Hz, 1H), 7.72 – 7.68 (m, 1H), 7.47 (dd, J = 8.3, 4.2 Hz, 1H); Ms (ESI): m/z = 320.1 [M+H]+.

Compound 4m, white solid, yield: 77%. (This compound is known.5) 1H NMR (500 MHz, CDCl\textsubscript{3}) \(\delta\) 8.87 (dd, J = 4.2, 1.7 Hz, 1H), 8.23 (dd, J = 8.3, 1.7 Hz, 1H), 7.96 (dd, J = 8.2, 1.4 Hz, 1H), 7.83 (d, J = 7.3 Hz, 1H), 7.74 (dd, J = 7.3, 1.4 Hz, 1H), 7.68 – 7.62 (m, 2H), 7.55 (d, J = 7.7 Hz, 1H), 7.44 (dd, J = 8.3, 4.2 Hz, 1H), 2.76 (s, 3H); Ms (ESI): m/z = 289.1 [M+H]+.

Compound 4n, white solid, yield: 57%. 1H NMR (500 MHz, CDCl\textsubscript{3}) \(\delta\) 8.86 (dd, J = 4.2, 1.7 Hz, 1H), 8.24 (dd, J = 8.3, 1.7 Hz, 1H), 7.98 (dd, J = 8.2, 1.4 Hz, 1H), 7.87 – 7.77 (m, 2H), 7.75 (dd, J = 7.3, 1.4 Hz, 1H), 7.71 – 7.65 (m, 1H), 7.49 – 7.43 (m,
13C NMR (125 MHz, CDCl$_3$) δ 166.9 (d, $J_{CCCF} = 2.9$ Hz), 164.6 (d, $J_{CCCF} = 1.4$ Hz), 158.1 (d, $J_{CF} = 266.2$ Hz), 151.2, 144.44, 136.8 (d, $J_{CCCF} = 7.6$ Hz), 136.4, 134.8, 130.4, 123.0, 129.6, 129.5, 126.3, 122.7 (d, $J_{CCF} = 19.7$ Hz), 122.1, 120.2 (d, $J_{CCCF} = 3.7$ Hz), 118.5 (d, $J_{CCF} = 12.4$ Hz); 19F NMR (471 MHz, CDCl$_3$) δ -112.2; IR (neat) ν 2925, 2854, 1781, 1721, 1611, 1481, 1397, 1258, 1112, 961, 911, 880, 826, 790, 744; Ms (ESI): $m/z = 293.1$ [M+H]$^+$.

![Chemical Structure](4o.png)

Compound 4o, white solid, yield: 93%. (This compound is known.4) 1H NMR (500 MHz, CDCl$_3$) δ 9.04 – 9.00 (m, 1H), 8.86 (dd, $J = 4.2$, 1.7 Hz, 1H), 8.27 – 8.22 (m, 2H), 8.02 – 7.96 (m, 3H), 7.81 (dd, $J = 7.3$, 1.4 Hz, 1H), 7.75 – 7.67 (m, 3H), 7.44 (dd, $J = 8.3$, 4.2 Hz, 1H); Ms (ESI): $m/z = 325.1$ [M+H]$^+$.

![Chemical Structure](4p.png)

Compound 4p, yellow solid, yield: 83%. (This compound is known.5) 1H NMR (500 MHz, CDCl$_3$) δ 8.86 (dd, $J = 4.2$, 1.7 Hz, 1H), 8.50 (s, 2H), 8.23 (dd, $J = 8.3$, 1.7 Hz, 1H), 8.14 – 8.08 (m, 2H), 7.98 (dd, $J = 8.3$, 1.3 Hz, 1H), 7.81 (dd, $J = 7.3$, 1.4 Hz, 1H), 7.75 – 7.67 (m, 3H), 7.44 (dd, $J = 8.3$, 4.2 Hz, 1H); Ms (ESI): $m/z = 325.1$ [M+H]$^+$.

Deuterium Labeling Experiments

\[\begin{array}{c}
\text{Et-} \quad \text{O} \\
\text{Et} \quad \text{CD}_3 \\
\text{N} \\
\text{Q} \\
\text{[D$_3$]-1d (>99% D)} \\
\end{array} + \text{MeNO}_2 \xrightarrow{\text{Cu(OAc)$_2$}} \xrightarrow{\text{K$_2$S$_2$O$_8$, PhCO$_2$Na}} \xrightarrow{\text{Al$_2$O$_3$, DMPU}, 1,4-	ext{dioxane/PrOH}, 165 \degree C} \begin{array}{c}
\text{Et} \\
\text{N} \\
\text{O} \\
\text{[D$_2$]-2d (18% D)} \\
\end{array}
\]
A 50 mL Schlenk tube was charged with [D₃]-1d (77.7 mg, 0.30 mmol), Cu(OAc)₂ (54.5 mg, 0.30 mmol), K₂S₂O₈ (162 mg, 0.60 mmol), PhCO₂Na (21.6 mg, 0.15 mmol), neutral alumina (60 mg), DMPU (72 μL, 77 mg, 0.60 mmol), 1,4-dioxane (0.9 mL), isopropanol (1.1 mL) and nitromethane (1.0 mL). The tube was capped and stirred rigorously at 165 °C for 4h. Then the reaction mixture was cooled to room temperature, diluted with EtOAc (20 mL) and filtered. The filtrate was washed with water (10 mL), brine (10 mL), dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel, eluting with EtOAc/Hexane (1:4 ~ 1:1, v/v), to afford product [D₂]-2d (16.2 mg, 19%) and recovered [D₃]-1d (57.5 mg, 74%). The ratio of deuterium was determined by ¹H NMR.

[D₂]-2d, ¹H NMR (500 MHz, CDCl₃) δ 8.85 (dd, J = 4.2, 1.7 Hz, 1H), 8.18 (dd, J = 8.3, 1.7 Hz, 1H), 7.92 (dd, J = 8.1, 1.5 Hz, 1H), 7.64 – 7.59 (m, 1H), 7.57 (dd, J = 7.3, 1.5 Hz, 1H), 7.42 (dd, J = 8.3, 4.2 Hz, 1H), 2.94 (d, J = 18.4 Hz, 0.82H), 2.75 (d, J = 18.4 Hz, 0.81H), 2.04 – 1.95 (m, 1H), 1.94 – 1.87 (m, 2H), 1.86 – 1.72 (m, 2H), 1.17 (t, J = 7.5 Hz, 3H), 1.06 (t, J = 7.5 Hz, 3H).

Recovered [D₃]-1d, ¹H NMR (500 MHz, CDCl₃) δ 10.22 (s, 1H), 8.87 – 8.77 (m, 2H), 8.13 (dd, J = 8.3, 1.6 Hz, 1H), 7.56 – 7.39 (m, 3H), 1.93 – 1.83 (m, 2H), 1.67 – 1.58 (m, 2H), 1.37 – 1.29 (m, 0.31H), 0.94 (t, J = 7.5 Hz, 6H).

A 50 mL Schlenk tube was charged with [D₅]-3a (75.9 mg, 0.30 mmol), Cu(OAc)₂ (5.4 mg, 0.030 mmol), Ag₂CO₃ (165 mg, 0.60 mmol), Na₂HPO₄ (42.6 mg, 0.30 mmol), DMA (2.0 mL) and nitromethane (0.5 mL). The tube was capped and stirred rigorously at 140 °C for 4h. Then the reaction mixture was cooled to room temperature, diluted with EtOAc (30 mL) and filtered. The filtrate was washed with water (3 × 10 mL), brine (10 mL), dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel, eluting with EtOAc/Hexane (1:4 ~ 1:1, v/v), to afford product [D₄]-4a (20.0 mg, 24%) and recovered [D₅]-3a (54.6 mg, 72%). The ratio of deuterium was determined by ¹H NMR.
[D₄]-4a, ¹H NMR (500 MHz, CDCl₃) δ 8.88 (dd, J = 4.2, 1.7 Hz, 1H), 8.23 (dd, J = 8.3, 1.7 Hz, 1H), 7.97 (dd, J = 8.2, 1.4 Hz, 1H), 7.76 (dd, J = 7.3, 1.4 Hz, 1H), 7.68 (dd, J = 8.2, 7.3 Hz, 1H), 7.45 (dd, J = 8.3, 4.2 Hz, 1H).

Recovered [D₅]-3a, ¹H NMR (500 MHz, CDCl₃) δ 10.75 (s, 1H), 8.95 (dd, J = 7.6, 1.3 Hz, 1H), 8.84 (dd, J = 4.2, 1.7 Hz, 1H), 8.17 (dd, J = 8.3, 1.6 Hz, 1H), 7.59 (t, J = 7.9 Hz, 1H), 7.54 (dd, J = 8.3, 1.3 Hz, 1H), 7.47 (dd, J = 8.2, 4.2 Hz, 1H).

Parallel KIE Experiments

A 50 mL Schlenk tube was charged with 3a (74.4 mg, 0.30 mmol) or [D₅]-3a (75.9 mg, 0.30 mmol), Cu(OAc)₂ (5.4 mg, 0.030 mmol), Ag₂CO₃ (165 mg, 0.60 mmol), Na₂HPO₄ (42.6 mg, 0.30 mmol), DMA (2.0 mL) and nitromethane (0.5 mL). The tube was capped and stirred rigorously at 140 °C. The reaction was stopped by rapid cooling in the indicated reaction period, and analyzed by GC using benzophenone as the internal standard. The average GC yield was calculated after calibrating the response of GC based on three runs of each reaction.

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield of 4a (%)</td>
<td>0.4</td>
<td>1.1</td>
<td>2.0</td>
<td>2.1</td>
<td>3.9</td>
<td>4.2</td>
<td>3.6</td>
<td>5.0</td>
<td>5.5</td>
<td>7.5</td>
<td>7.4</td>
<td>8.2</td>
<td>9.2</td>
<td>12.4</td>
<td>14.1</td>
</tr>
<tr>
<td>Yield of [D₄]-4a (%)</td>
<td>0.2</td>
<td>0.7</td>
<td>1.1</td>
<td>2.0</td>
<td>2.3</td>
<td>5.0</td>
<td>4.1</td>
<td>4.6</td>
<td>4.9</td>
<td>5.7</td>
<td>5.9</td>
<td>7.6</td>
<td>8.0</td>
<td>8.3</td>
<td>11.2</td>
</tr>
</tbody>
</table>
Equation for 4a: $y = 0.152x - 0.583 \quad R^2 = 0.974$
Equation for [D$_4$]-4a: $y = 0.120x + 0.286 \quad R^2 = 0.963$

$k_H/k_D = 0.152/0.120 \approx 1.3$

KIE value determined from parallel reactions is 1.3.

O18 Labeling Experiments

A 50 mL Schlenk tube was charged with amide (3a, 74.5 mg, 0.30 mmol), Cu(OAc)$_2$ (5.4 mg, 0.030 mmol), Ag$_2$CO$_3$ (165 mg, 0.60 mmol), Na$_2$HPO$_4$ (42.6 mg, 0.30 mmol), DMA (2.0 mL) and nitromethane (0.5 mL). H$_2^{18}$O (97 atom % 18O, 22 μL, 24 mg, 1.2 mmol) was added into the reaction mixture. The tube was capped and stirred rigorously at 140 °C for 24h. Then the reaction mixture was cooled to room temperature, diluted with EtOAc (30 mL) and filtered. The filtrate was washed with water (3 × 10 mL), brine (10 mL), dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The residue was purified by flash column
chromatography on silica gel, eluting with EtOAc/Hexane (1:4 ~ 1:1, v/v), to afford the 18O incorporated product 16O/18O-4a. The product was analyzed by HRMS.

ESI-MS of [C$_{17}$H$_{17}$N$_2$O$_2$]$^+$; theoretical m/z of [M+H]$^+$ = 275.0815, measured m/z of [M+H]$^+$ = 275.0823.

ESI-MS of [C$_{17}$H$_{17}$N$_2$O18O]$^+$; theoretical m/z of [M+H]$^+$ = 277.0857, measured m/z of [M+H]$^+$ = 277.0863. 60% isotopic enhancement.

References
13C NMR (125 MHz, CDCl$_3$)
1H NMR (500 MHz, CDCl$_3$)
13C NMR (125 MHz, CDC$_3$)
1H NMR (500 MHz, CDCl$_3$)
1H NMR (500 MHz, CDCl$_3$)
Me

Et

N

O

N

O

2c

$^1\text{H NMR (500 MHz, CDCl}_3\text{)}$
\(^1\)H NMR (500 MHz, CDCl\(_3\))
1H NMR (500 MHz, CDCl₃)
1H NMR (500 MHz, CDCl$_3$)
1H NMR (500 MHz, CDCl$_3$)
19F NMR (471 MHz, CDCl$_3$)
\[^1H \text{NMR (500 MHz, CDCl}_3 \]
1H NMR (500 MHz, CDCl$_3$)
1H NMR (500 MHz, CDCl$_3$)
13C NMR (125 MHz, CDCl$_3$)
1H NMR (500 MHz, CDCl$_3$)
13C NMR (125 MHz, CDCl$_3$)
13C NMR (125 MHz, CDCl$_3$)
19F NMR (471 MHz, CDCl$_3$)
19F NMR (471 MHz, CDCl$_3$)
1H NMR (500 MHz, CDCl$_3$)
1H NMR (500 MHz, CDCl$_3$)
1H NMR (500 MHz, CDCl$_3$)
1H NMR (400 MHz, CDCl$_3$)
1H NMR (500 MHz, CDCl$_3$)
recovered [D₃]-3a (>99% D)

¹H NMR (500 MHz, CDCl₃)