Supporting Information

Scandium-Catalyzed Intermolecular Hydroaminoalkylation of Olefins with Aliphatic Tertiary Amines

Adi E. Nako, Juzo Oyamada, Masayoshi Nishiura and Zhaomin Hou*

Organometallic Chemistry Laboratory and RIKEN Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

houz@riken.jp

Contents

1. General Methods S2
2. Catalyst Screening S3
3. Typical Procedure for the Catalytic Alkylation of Amines with Olefins S4
4. Analytical Data S4
5. Kinetic Isotope Effect Experiments S9
6. Dialkylation of 1k to give 3k S11
7. References S12
8. 1H and 13C NMR Spectra of Products S13
1. General Methods

All manipulations were performed under a nitrogen atmosphere by use of standard Schlenk techniques or in an mBRAUN Labmaster glovebox. Nitrogen was purified by passing through a Dryclean column (4 Å molecular sieves, Nikka Seiko Co.) and a Gasclean GC-XR column (Nikka Seiko Co.). Hexane, THF, toluene and benzene (dehydrated, stabilizer-free) were obtained from Kanto Chemical Co. and purified by use of an MBraun SPS-800 solvent purification system. Silica gel column chromatography was performed with Silica Gel 60 N (spherical, neutral, 40-50 mm) obtained from Kanto Chemical Co. [Ln(CH₂C₆H₄NMe₂-o)₃] (Ln = Sc, Y, Lu, Gd, Sm)¹ and [(C₅Me₅)Sc(CH₂C₆H₄NMe₂-o)₂]² were prepared according to the literature methods. N,N-dimethylbutylamine (1a), N,N-dimethylcyclohexylamine (1c), N,N-dibutylmethylamine (1e), N-methylpyrrolidine (1f), d₃-N-methylpyrrolidine (1f₃), N-methylpiperidine (1h) and tropane (1j) were commercially available. N-methyl,N-ethylbutylamine (1d), N-methyl,4-methylpiperidine (1i), N-methylhexamethylenimine (1g), and N,N-dimethyladamantylamine (1k), were prepared via the literature method.³ All olefins were commercially available, except 4-dimethylaminostyrene (2e) which was synthesized via the literature method.⁴ Amines and olefins were all distilled from appropriate drying agents such as CaH₂ and Na. All ¹H NMR and ¹³C NMR spectra were recorded on either a JEOL AL-400 MHz instrument or a Bruker AVANCE III HD 500 NMR spectrometer in C₆D₆ with tetramethylishilane as an internal standard otherwise mentioned. Data are reported as follows: chemical shift in ppm (δ), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quin = quintet, sex = sextet, sep = septet, m = multiplet, br = broad signal), coupling constant (Hz), integration. Gas chromatography analysis was performed on Shimadzu GC2014 using a capillary column (Agilent J&W GC columns DB-1, 30m, 0.32 mm i.d., 0.25 mm film thickness. High-resolution MS were obtained on a Bruker microTOF-Q III (ESI+).
2. Catalyst Screening

In a glovebox, [Sc(\text{CH}_2\text{C}_6\text{H}_4\text{NMe}_2\text{-o})_3] (6 mg, 0.013 mmol) was dissolved in \text{C}_6\text{D}_6 (1.0 mL). To this solution, ferrocene (19 mg, 0.1 mmol), \text{N,N-}dimethylbutylamine (25 mg, 0.25 mmol), norbornene (26 mg, 0.28 mmol) and [\text{Ph}_3\text{C}][\text{B}(\text{C}_6\text{F}_5)_4] (16 mg, 0.013 mmol) were added sequentially. The biphasic mixture was transferred to a J Young NMR tube, sealed and a baseline \(^1\text{H} \) NMR spectrum taken. The tube was then heated at 70 °C for 24 hours, and the yield calculated from the internal standard (ferrocene). For entries 5 and 6, the sample was quenched with \text{EtOAc} (2 mL) after 24 h at 70 °C, filtered and the volatiles removed \textit{in vacuo} to remove the paramagnetic catalyst.

Table S1. Catalyst Dependant Hydroaminoalkylation of Norbornene with \text{N,N-}dimethylbutylamine

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Co-catalyst</th>
<th>Yield, %(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[(\text{C}_5\text{Me}_4\text{SiMe}_3)\text{Sc(\text{CH}_2\text{C}_6\text{H}_4\text{NMe}_2\text{-o})}_3]_2]</td>
<td>[\text{Ph}_3\text{C}][\text{B}(\text{C}_6\text{F}_5)_4]</td>
<td>90</td>
</tr>
<tr>
<td>2</td>
<td>[(\text{C}_5\text{H}_5)\text{Sc(\text{CH}_2\text{C}_6\text{H}_4\text{NMe}_2\text{-o})}_3]_2</td>
<td>[\text{Ph}_3\text{C}][\text{B}(\text{C}_6\text{F}_5)_4]</td>
<td>52</td>
</tr>
<tr>
<td>3</td>
<td>[\text{Y(\text{CH}_2\text{C}_6\text{H}_4\text{NMe}_2\text{-o})}_3]_3</td>
<td>[\text{Ph}_3\text{C}][\text{B}(\text{C}_6\text{F}_5)_4]</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>[\text{Lu(\text{CH}_2\text{C}_6\text{H}_4\text{NMe}_2\text{-o})}_3]_3</td>
<td>[\text{Ph}_3\text{C}][\text{B}(\text{C}_6\text{F}_5)_4]</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>[\text{Gd(\text{CH}_2\text{C}_6\text{H}_4\text{NMe}_2\text{-o})}_3]_3</td>
<td>[\text{Ph}_3\text{C}][\text{B}(\text{C}_6\text{F}_5)_4]</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>[\text{Sm(\text{CH}_2\text{C}_6\text{H}_4\text{NMe}_2\text{-o})}_3]_3</td>
<td>[\text{Ph}_3\text{C}][\text{B}(\text{C}_6\text{F}_5)_4]</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>[\text{Sc(\text{CH}_2\text{C}_6\text{H}_4\text{NMe}_2\text{-o})}_3]_3</td>
<td>N/A</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>\text{N/A}</td>
<td>[\text{Ph}_3\text{C}][\text{B}(\text{C}_6\text{F}_5)_4]</td>
<td>0</td>
</tr>
<tr>
<td>9(^c)</td>
<td>[\text{Sc(\text{CH}_2\text{C}_6\text{H}_4\text{NMe}_2\text{-o})}_3]_3</td>
<td>[\text{Ph}_3\text{C}][\text{B}(\text{C}_6\text{F}_5)_4]</td>
<td><5</td>
</tr>
</tbody>
</table>

\(^a\) Reactions were carried out with 0.25 mmol amine and 0.275 mmol norbornene in 1 mL of \text{C}_6\text{D}_6. \(^b\) NMR yield calculated against \text{Cp}_2\text{Fe} as an internal standard. \(^c\) 10 mol% [\text{Ph}_3\text{C}][\text{B}(\text{C}_6\text{F}_5)_4] used.
3. Typical Procedure for the Catalytic Alkylation of Amines with Olefins

In a glovebox, [Sc(CH₂C₆H₄NMe₂-ο)]₂ (22 mg, 0.05 mmol) was dissolved in toluene (2.0 mL). To this solution N-methylpiperidine (99 mg, 1 mmol), styrene (115 mg, 1.1 mmol) and [Ph₃C][B(C₆F₅)₃] (46 mg, 0.05 mmol) were added sequentially. The biphasic mixture was transferred to a Schlenk ampoule, sealed and heated at 70 °C for 24 hours. EtOAc (5 mL) was added to the crude mixture and the volatiles removed in vacuo. The compound was purified by silica gel column chromatography (hexane/EtOAc), to afford 4a as colourless oil (173 mg, 0.851 mmol, 85 % yield).

4. Analytical Data

3a: ¹H NMR (500 MHz, C₆D₆): δ 2.30 – 2.25 (m, 2H), 2.22 (br, 1H), 2.16 (br, 1H), 2.16 – 2.12 (m, 1H), 2.14 (s, 3H), 1.94 (dd, J = 7.5 Hz, 4.5 Hz, 1H), 1.64 – 1.58 (m, 1H), 1.52 – 1.40 (m, 4H), 1.37 – 1.27 (m, 4H), 1.18 – 1.13 (m, 1H), 1.05 (d, J = 9.5 Hz, 1H), 0.91 (t, J = 7.0 Hz, 3H). ¹³C NMR (125 MHz, C₆D₆): δ 64.3, 58.3, 42.7, 40.7, 39.9, 36.9, 36.5, 35.6, 30.5, 30.2, 29.5, 20.9, 14.3. HR MS (ESI+): Found 196.2066 [M+H]+, calcd. for C₁₃H₂₆N⁺ 196.2065.

3b: ¹H NMR (500 MHz, C₆D₆): δ 2.32 – 2.27 (m, 2H), 2.23 (br, 1H), 2.18 – 2.14 (m, 2H), 2.16 (s, 3H), 1.96 (dd, J = 7.0 Hz, 5.0 Hz, 1H), 1.66 – 1.60 (m, 1H), 1.50 – 1.45 (m, 4H), 1.38 – 1.25 (br m, 12H), 1.18 – 1.13 (m, 3H), 1.05 (d, J = 9.5 Hz, 1H), 0.90 (t, J = 8.0 Hz, 3H). ¹³C NMR (125 MHz, C₆D₆): δ 64.3, 58.7, 42.7, 40.7, 39.9, 37.0, 36.5, 35.6, 32.4, 30.5, 30.1, 29.9, 29.5, 28.1, 27.9, 23.1, 14.4. HR MS (ESI+): Found 252.2692 [M+H]+, calcd. for C₁₃H₃₄N⁺ 252.2691.

3c: ¹H NMR (500 MHz, C₆D₆): δ 2.35 – 2.17 (m, 4H), 2.21 (s, 3H), 2.05 (dd, J = 12.3 Hz, 7.2 Hz, 1H), 1.81 – 1.67 (m, 4H), 1.66 – 1.58 (m, 1H), 1.58 – 1.44 (m, 3H), 1.40 – 1.33 (m, 1H), 1.32 – 1.27 (m, 1H), 1.23 – 1.10 (m, 7H), 1.06 (d, J = 9.7 Hz, 1H), 1.04 – 0.96 (m, 1H). ¹³C NMR (125 MHz, C₆D₆): δ 63.7, 59.7, 41.1, 39.9, 38.1, 37.0, 36.3, 35.6, 30.5, 29.6, 29.1, 28.9, 26.9, 26.5. HR MS (ESI+): Found 222.2221 [M+H]+, calcd. for C₁₃H₃₈N⁺ 222.2222.

3d: ¹H NMR (500 MHz, C₆D₆): δ 2.50 – 2.31 (m, 4H), 2.24 (br, 1H), 2.21 – 2.17 (m, 2H), 2.03 (dd, J = 12.5 Hz, 7.1 Hz, 1H), 1.65 – 1.58 (m, 1H), 1.55 – 1.27 (m, 8H), 1.20 – 1.12 (m, 3H), 1.06 (d, J = 9.7 Hz, 1H), 0.98 (t, J = 7.1 Hz, 3H), 0.92 (t, J = 7.2 Hz, 3H). ¹³C NMR (125 MHz, C₆D₆): δ 60.3, 54.0, 48.2, 41.0, 39.9, 36.9, 36.5, 35.6, 30.5, 30.2, 29.5, 21.0, 14.4, 12.4. HR MS (ESI+): Found: 210.2222 [M+H]+, calcd. for C₁₄H₂₉N⁺ 210.2222.

3e: ¹H NMR (500 MHz, C₆D₆): δ 2.44 – 2.31 (m, 4H), 2.26 (br, 1H), 2.23 – 2.18 (m, 2H), 2.04 (dd, J = 12.5 Hz, 7.0 Hz, 1H), 1.67 – 1.60 (m, 1H), 1.56 – 1.41 (m, 6H), 1.39 – 1.29 (m, 6H), 1.21 – 1.11 (m, 3H), 1.06 (d, J = 9.7 Hz, 1H), 0.92 (t, J = 7.2 Hz, 6H). ¹³C NMR (125 MHz, C₆D₆): δ 61.0, 54.7, 41.0, 39.9, 36.9, 36.5, 35.5, 30.5, 30.2, 29.5, 21.0, 14.4. HR MS (ESI+): Found: 238.2536 [M+H]+, calcd. for C₁₅H₃₂N⁺ 238.2535.

3f: ¹H NMR (400 MHz, C₆D₆): δ 2.46 - 2.36 (m, 4H), 2.32 (dd, J = 11.6 Hz, 8.8 Hz, 1H), 2.28 (br, 1H), 2.17 (br, 1H), 2.07 (dd, J = 11.6 Hz, 7.3 Hz, 1H), 1.67 – 1.60 (m, 5H), 1.51 – 1.44 (m, 2H), 1.41 – 1.35 (m, 1H), 1.30 (ddt, J = 9.7 Hz, 3.8 Hz, 1.9 Hz, 1H),
1.22 – 1.10 (m, 3H), 1.07 – 1.03 (m, 1H). 13C NMR (100 MHz, C6D6): δ 62.6, 54.6, 41.9, 39.9, 36.9, 36.7, 35.6, 30.5, 29.5, 24.0. HR MS (ESI+): Found 180.1755 [M+H]+, calcd. for C12H23N+ 180.1752.

3g: 1H NMR (500 MHz, C6D6): δ 2.55 (br, 4H), 2.27 (dd, J = 12.1 Hz, 8.5 Hz, 1H), 2.21 – 2.18 (m, 2H), 2.11 (dd, J = 12.1 Hz, 7.4 Hz, 1H), 1.57 (br, 9H), 1.51 – 1.44 (m, 2H), 1.37 – 1.30 (m, 1H), 1.28 (d, J = 9.5 Hz, 1H), 1.15 (br, 3H), 1.05 (d, J = 9.4 Hz, 1H). 13C NMR (125 MHz, C6D6): δ 64.5, 56.0, 41.3, 39.9, 37.0, 36.4, 35.7, 30.5, 29.5, 29.3, 27.6. HR MS (ESI+): Found: 208.2066 [M+H]+, calcd. for C13H26N+ 208.2065.

3h: 1H NMR (500 MHz, C6D6): δ 2.30 (br, 4H), 2.21 (br, 1H), 2.16 (br, 1H), 2.12 (dd, J = 12.2 Hz, 8.6 Hz, 1H), 1.93 (dd, J = 12.1 Hz, 7.4 Hz, 1H), 1.66 – 1.61 (m, 1H), 1.56 (s, 2H), 1.56 – 1.51 (m, 4H), 1.48 – 1.44 (m, 1H), 1.35 – 1.27 (m, 4H), 1.18 – 1.10 (m, 3H), 1.03 (d, J = 9.7 Hz, 1H). 13C NMR (125 MHz, C6D6): δ 65.8, 55.4, 40.0, 37.0, 36.6, 35.6, 30.5, 30.1, 29.5, 26.7, 25.2. HR MS (ESI+): Found 194.1904 [M+H]+, calcd. for C13H23N+ 194.1909.

3i: 1H NMR (500 MHz, C6D6): δ 2.80 – 2.73 (m, 2H), 2.22 (d, J = 9.0 Hz, 1H), 2.17 – 2.12 (m, 2H), 1.99 – 1.91 (m, 1H), 1.77 (m, 1H), 1.71 – 1.63 (m, 2H), 1.61 – 1.42 (m, 7H), 1.40 – 1.27 (m, 2H), 1.20 – 1.10 (m, 3H), 1.05 (d, J = 9.7 Hz, 1H), 0.83 (d, J = 6.6 Hz, 3H). 13C NMR (125 MHz, C6D6): δ 65.5 (x2), 63.2, 62.8, 55.0, 54.6, 40.1, 40.0 (x3), 37.0, 36.6 (x2), 35.6 (x2), 33.7, 31.6, 31.5, 30.5, 29.5, 26.1, 20.0. HR MS (ESI+): Found 208.2065 [M+H]+, calcd. for C14H28N+ 208.2065.

3j: 1H NMR (500 MHz, C6D6): δ 3.06 (s, 2H), 2.32 (s, 1H), 2.20 (s, 1H), 2.11 (dd, J = 12.1 Hz, 8.5 Hz, 1H), 1.99 (dd, J = 12.1 Hz, 7.2 Hz, 1H), 1.85 – 1.78 (m, 4H), 1.58 – 1.47 (m, 3H), 1.44 – 1.35 (m, 5H), 1.32 – 1.30 (m, 1H), 1.22 – 1.13 (m, 5H), 1.07 (d, J = 9.1 Hz, 1H). 13C NMR (125 MHz, C6D6): δ 57.9, 57.8, 56.7, 39.5, 37.4, 34.5, 34.3, 33.9, 29.1, 29.0, 28.1, 27.1, 24.5, 24.3, 15.0. HR MS (ESI+): Found 220.2065 [M+H]+, calcd. for C15H25N+ 220.2065.

3k: 1H NMR (500 MHz, C6D6): δ 2.72 (d, J = 3.9 Hz, 1H), 2.53 (t, J = 12.5 Hz, 1H), 2.25 (s, 3H), 2.22 – 2.17 (m, 4H), 2.00 (br, 3H), 1.77 (d, J = 11.7 Hz, 3H), 1.73 – 1.71 (m, 1H), 1.67 (d, J = 11.7 Hz, 3H), 1.61 – 1.45 (m, 12H), 1.43 – 1.40 (m, 1H), 1.35 – 1.17 (m, 5H), 1.15 (d, J = 7.5 Hz, 2H), 1.01 (d, J = 9.5 Hz, 2H). 13C NMR (125 MHz, C6D6): δ 54.0, 52.8, 49.3, 46.0, 43.5, 41.8, 41.4, 41.3, 40.4, 39.3, 37.5, 37.3, 35.4, 34.5, 33.3, 31.8, 30.6, 30.2, 29.7 (x2). HR MS (ESI+): Found 368.3317 [M+H]+, calcd. for C20H24N+ 368.3317.

4a: 1H NMR (500 MHz, C6D6): δ 7.19 – 7.16 (m, 2H), 7.12 (d, J = 7.6 Hz, 2H), 7.08 (t, J = 7.6 Hz, 1H), 2.58 (t, J = 7.7 Hz, 2H), 2.25 (br, 4H), 2.20 (t, J = 7.1 Hz, 2H), 1.73 (quin, J = 7.5 Hz, 2H), 1.52 (quin, J = 5.5 Hz, 4H), 1.33 (br, 2H). 13C NMR (125 MHz, C6D6): δ 142.9, 128.9, 128.6, 126.0, 58.6, 54.9, 33.3, 29.3, 26.6, 25.1. HR MS (ESI+): Found 204.1753 [M+H]+, calcd. for C14H19N+ 204.1752.

4b: 1H NMR (500 MHz, C6D6): δ 7.07 (d, J = 7.7 Hz, 2H), 7.02 (d, J = 7.7 Hz, 2H), 2.60 (t, J = 7.6 Hz, 2H), 2.27 (br, 4H), 2.23 (t, J = 7.2 Hz, 2H), 2.16 (s, 3H), 1.76 (quin, J = 7.5 Hz, 2H), 1.53 (quin, J = 6.0 Hz, 4H), 1.33 (br,
13C NMR (125 MHz, C$_6$D$_6$): δ 139.9, 135.1, 129.3, 128.8, 58.7, 55.0, 33.5, 29.4, 26.7, 25.2, 21.1. HR MS (ESI+): Found 218.1906 [M+H]$^+$, calcd. for C$_{15}$H$_{24}$N$^+$ 218.1909.

![Image](ESI+): 13C NMR (125 MHz, C$_6$D$_6$): δ 148.1, 139.5, 128.2, 125.1, 58.4, 54.6, 34.0, 33.1, 31.2, 29.0, 26.3, 24.8. HR MS (ESI+): Found 260.2373 [M+H]$^+$, calcd. for C$_{18}$H$_{30}$N$^+$ 260.2373.

13C NMR (125 MHz, C$_6$D$_6$): δ 149.5, 131.1, 129.4, 113.5, 55.8, 55.0, 40.7, 33.1, 29.8, 26.7, 25.2. HR MS (ESI+): Found 247.2177 [M+H]$^+$, calcd. for C$_{16}$H$_{27}$N$_2^+$ 247.2174.

13C NMR (125 MHz, C$_6$D$_6$): δ 159.8 ($J = 242.8$ Hz), 136.5 ($J = 3.2$ Hz), 128.2 ($J = 7.7$ Hz), 113.3 ($J = 21.0$ Hz), 56.4, 53.0, 31.0, 27.3, 24.7, 23.2. HR MS (ESI+): Found 222.1657 [M+H]$^+$, calcd. for C$_{14}$H$_{21}$FN$^+$ 222.1658.

13C NMR (125 MHz, C$_6$D$_6$): δ 141.3, 131.8, 130.2, 128.7, 58.3, 54.9, 37.0, 29.0, 26.6, 25.1. HR MS (ESI+): Found 238.1357 [M+H]$^+$, calcd. for C$_{18}$H$_{25}$ClN$^+$ 238.1363.

13C NMR (125 MHz, C$_6$D$_6$): δ 142.0, 141.8, 139.2, 129.3, 129.0, 127.4 (x2), 127.2, 58.6, 55.0, 33.5, 29.3, 26.7, 25.2. HR MS (ESI+): Found 280.2060 [M+H]$^+$, calcd. for C$_{20}$H$_{26}$N$^+$ 280.2065.

13C NMR (125 MHz, C$_6$D$_6$): δ 63.2, 55.1, 26.7, 25.2, 22.1, 14.5 HR MS (ESI+): Found 200.1834 [M+H]$^+$, calcd. for C$_{14}$H$_{20}$NSiN$^+$ 200.1835.

13C NMR (125 MHz, C$_6$D$_6$): δ 132.9, 130.7, 65.9, 55.3, 53.1, 44.7, 42.9, 40.4, 38.7, 32.5, 32.2,
31.3, 26.7, 25.2. 5a: δ 132.7, 131.4, 65.6, 55.4, 54.1, 43.1, 42.5, 41.5, 38.8, 34.3, 32.7, 29.0, 26.7, 25.2; HR MS (ESI+): Found 232.2070 [M+H]+, calcd. for C16H28N1 232.2065.

5b: 1H NMR (500 MHz, C6D6): δ 2.30 (br, 4H), 2.04 (ddd, J = 28.9 Hz, 12.0 Hz, 7.3 Hz, 2H), 1.81 (td, J = 13.7 Hz, 6.8 Hz, 1H), 1.53 (quin, J = 6.0 Hz, 4H), 1.34 (br, 2H), 1.02 (d, J = 6.5 Hz, 3H), 0.84 (dd, J = 14.7 Hz, 4.5 Hz, 1H), 0.36 – 0.28 (m, 1H), 0.07 (s, 9H). 13C NMR (125 MHz, C6D6): δ 69.8, 55.5, 27.6, 26.7, 25.1, 23.3, 21.8, -0.37. HR MS (ESI+): Found 214.1987 [M+H]+, calcd. for C12H28NSi+ 214.1991.

5c: 1H NMR (500 MHz, C6D6): δ 7.19 (t, J = 7.4 Hz, 2H), 7.13 – 7.08 (m, 3H), 2.84 (dd, J = 13.3 Hz, 4.7 Hz, 1H), 2.31 – 2.26 (br m, 5H), 2.09 (dd, J = 12.0 Hz, 7.6 Hz, 1H), 1.99 (dd, J = 12.0 Hz, 7.1 Hz, 1H), 1.96 – 1.88 (m, 1H), 1.52 (quin, J = 6.0 Hz, 4H), 1.33 (br, 2H), 0.87 (d, J = 6.5 Hz, 3H). 13C NMR (125 MHz, C6D6): δ 141.6, 129.7, 128.4 (x2), 126.0, 66.0, 55.3, 41.6, 33.0, 26.7, 25.1, 18.2. HR MS (ESI+): Found 218.1904 [M+H]+, calcd. for C15H24N1 218.1909.

5d: 1H NMR (500 MHz, C6D6): δ 6.88 - 6.81 (m, 4H), 2.69 (dd, J = 13.4 Hz, 4.7 Hz, 1H), 2.24 (br, 4H), 2.17 (dd, J = 13.4 Hz, 8.4 Hz, 1H), 2.02 (dd, J = 12.51 Hz, 7.9 Hz, 1H), 1.95 (dd, J = 12.2 Hz, 6.9 Hz, 1H), 1.85 – 1.76 (m, 1H), 1.52 (quin, J = 5.5 Hz, 4H), 1.33 (br, 2H), 0.80 (d, J = 6.6 Hz, 3H). 13C NMR (125 MHz, C6D6): δ 161.8 (d, J = 242.9 Hz), 137.1 (d, J = 3.2 Hz), 131.0 (d, J = 7.6 Hz), 115.1 (d, J = 20.9 Hz), 65.8, 55.3, 40.5, 32.9, 26.6, 25.1, 18.0. HR MS (ESI+): Found 236.1817 [M+H]+, calcd. for C15H23FN1 236.1815.

5e: 1H NMR (500 MHz, C6D6): δ 8.29 (d, J = 8.5 Hz, 1H), 7.72 (d, J = 8.2 Hz, 1H), 7.61 (d, J = 8.1 Hz, 1H), 7.41 (t, J = 7.6 Hz, 1H), 7.33 – 7.27 (m, 2H), 7.23 (d, J = 6.9 Hz, 1H), 3.60 (dd, J = 13.5 Hz, 8.5 Hz, 1H), 2.46 (dd, J = 13.5 Hz, 8.9 Hz, 1H), 2.35 (br, 2H), 2.24 (br, 2H), 2.17 – 1.98 (m, 3H), 1.56 (quin, J = 5.5 Hz, 4H), 1.35 (br, 2H), 0.85 (d, J = 6.4 Hz, 3H). 13C NMR (125 MHz, C6D6): δ 138.4, 134.8, 133.0, 129.2, 127.5, 127.0, 125.8, 125.6 (x2), 124.9, 67.0, 55.7, 39.3, 32.8, 26.7, 25.1, 18.7. HR MS (ESI+): Found 268.2063 [M+H]+, calcd. for C15H26N1 268.2065.

5f: 1H NMR (500 MHz, C6D6): δ 2.29 (br, 4H), 2.10 (dd, J = 12.1 Hz, 6.7 Hz, 1H), 2.00 (dd, J = 12.1 Hz, 7.9 Hz, 1H), 1.68 – 1.59 (m, 1H), 1.54 (quin, J = 5.5 Hz, 4H), 1.51 – 1.45 (m, 1H), 1.38 – 1.22 (m, 6H), 1.12 – 1.05 (m, 1H), 0.97 (d, J = 6.6 Hz, 3H), 0.92 (q, J = 7.0 Hz, 3H). 13C NMR (125 MHz, C6D6): δ 67.0, 55.5, 35.4, 30.9, 29.7, 26.7, 25.2, 23.5, 18.7, 14.4. HR MS (ESI+): Found 184.2064 [M+H]+, calcd. for C12H18N1 184.2065.

5g: 1H NMR (500 MHz, C6D6): δ 2.32 (br m 2H), 2.25 (br, 2H), 2.20 (dd, J = 12.1 Hz, 6.2 Hz, 1H), 2.01 (dd, J = 12.1 Hz, 8.6 Hz, 1H), 1.75 – 1.72 (m, 2H), 1.68 – 1.65 (m, 1H), 1.60 – 1.51 (m, 7H), 1.36 – 1.31 (m, 3H), 1.27 – 1.20 (m, 2H), 1.17 – 1.08 (m, 2H), 1.06 -0.97 (m, 1H), 0.94 (d, J = 6.8 Hz, 3H). 13C NMR (125 MHz, C6D6): δ 64.4, 55.6, 41.3, 35.8, 31.5, 28.7, 27.4, 27.3, 27.2, 26.7, 25.2, 15.1. HR MS (ESI+): Found 210.2224 [M+H]+, calcd. for C10H23N1 210.2222.
5h: 1H NMR (500 MHz, C$_6$D$_6$): δ 2.31 – 2.28 (br, 4H), 2.09 (dd, $J = 12.0$ Hz, 6.7 Hz, 1H), 2.00 (dd, $J = 12.0$ Hz, 7.9 Hz, 1H), 1.89 – 1.64 (m, 6H), 1.54 (quin, $J = 6.0$ Hz, 4H), 1.44 – 1.30 (m, 4H), 1.27 – 1.10 (m, 3H), 0.99 – 0.79 (m, 3H), 0.96 (d, $J = 6.5$ Hz, 3H). 13C NMR (125 MHz, C$_6$D$_6$): δ 67.4, 55.5, 44.0, 35.4, 34.8, 33.5, 27.7, 27.2, 26.9, 26.8, 26.7, 25.2, 19.2. HR MS (ESI+): Found 224.2378 [M+H]$^+$, calcd. for C$_{15}$H$_{30}$N$^+$ 224.2378.

6a: 1H NMR (500 MHz, C$_6$D$_6$): δ 7.18 (d, $J = 7.5$ Hz, 2H), 7.11 (d, $J = 7.3$ Hz, 2H), 7.08 (t, $J = 7.3$ Hz, 1H), 2.61 (t, $J = 7.6$ Hz, 2H), 2.35 – 2.32 (m, 6H), 1.74 (quin, $J = 7.5$ Hz, 2H), 1.61 – 1.55 (m, 4H). 13C NMR (125 MHz, C$_6$D$_6$): δ 142.7, 128.8, 128.7, 126.1, 55.7, 54.2, 33.9, 30.9, 23.9. HR MS (ESI+): Found 190.1599 [M+H]$^+$, calcd. for C$_{13}$H$_{20}$N$^+$ 190.1596.
5. Kinetic Isotope Effect Experiments

\[
\begin{align*}
\text{1f} + \text{2b} & \rightarrow [\text{Sc(CH}_2\text{C}_6\text{H}_4\text{NMe}_2\text{-o})_3]\text{, (5 mol\%)} \\
& [\text{Ph}_3\text{C}[\text{B}(\text{C}_6\text{F}_5)_4]\text{, (5 mol\%) }]
\end{align*}
\]

Toluene, 70 °C, 24 h

\[
\begin{align*}
\text{N} - \text{CH}_3 & \rightarrow \text{N} - \text{CH}_2\text{-phenyl}
\end{align*}
\]

Compound 6a could be synthesized following the general procedure above in an 81% isolated yield.

Intermolecular Competition Experiment

\[
\begin{align*}
\text{N} \text{CD}_3 + \text{N} \text{CH}_3 & \rightarrow [\text{Sc(CH}_2\text{C}_6\text{H}_4\text{NMe}_2\text{-o})_3]\text{, (5 mol\%)} \\
& [\text{Ph}_3\text{C}[\text{B}(\text{C}_6\text{F}_5)_4]\text{, (5 mol\%) }]
\end{align*}
\]

Toluene, 70 °C, 8 h

\[
\begin{align*}
\text{D/H} & \rightarrow \text{H/D} \\
k_{D} / k_{D} = 2.70 & \text{6a/6ad3}
\end{align*}
\]

In a glovebox, [Sc(CH\text{2}C\text{6}H\text{4}NMe\text{2-o})\text{3}] (6 mg, 0.013 mmol) was dissolved in toluene (1.0 mL). To this solution 1f\text{d3} (22 mg, 0.25 mmol), 1f (21 mg, 0.25 mmol), styrene (26 mg, 0.25 mmol) and [Ph\text{3}C][B(C\text{6}F\text{5})\text{4}] (16 mg, 0.013 mmol) were added sequentially. The biphasic mixture was transferred to a Schlenk ampoule, sealed and heated at 70 °C for 8 hours. EtOAc (5 mL) was added to the crude mixture and the volatiles removed in vacuo. The compound was purified by silica gel column chromatography (hexane/EtOAc), to afford a mixture of 6a and 6ad3 as a colorless oil (12 mg, 25% yield). A \(k_{D}/k_{D}\) value of 2.70 was found by comparison of the relative ratios of 6a and 6ad3 by \(^1\text{H NMR}\) spectroscopy using the integration values for the benzylic proton(s). No deuterium scrambling was observed when this mixture of 6a and 6ad3 was exposed to the standard reaction conditions.

Fig. S1. The \(^1\text{H NMR Spectrum of an Isolated Mixture of 6a and 6ad3}
Comparison of Initial Rates

In a glovebox, \([\text{Sc}((\text{CH}_2\text{C}_6\text{H}_4\text{NMe}_2-\text{o})_3])\) (6 mg, 0.013 mmol) was dissolved in \(\text{C}_7\text{D}_8\) (1.0 mL). To this solution, ferrocene (19 mg, 0.1 mmol), \(N\)-methylpyrrolidine (21 mg, 0.25 mmol), styrene (29 mg, 0.28 mmol) and \([\text{Ph}_3\text{C}][\text{B}(\text{C}_6\text{F}_5)_4]\) (16 mg, 0.013 mmol) were added sequentially. The biphasic mixture was transferred to a J Young NMR tube, sealed and the reaction monitored by \(^1\text{H}\) NMR at 70 °C for 12 h. The reaction with \(\text{d}_3-N\)-methylpyrrolidine was performed and monitored under exactly the same conditions. Initial rates were extracted by comparing the \(^1\text{H}\) NMR integration of the benzylic proton(s) of 6a and 6a\(_{d3}\) against the internal standard. A \(k_H/k_D\) value of 1.97 ± 0.03 was found by comparison of the initial rates of reaction.

![Fig. S2. Initial Rates of C–H/C–D Addition of N-methylpyrrolidine to Styrene](image)

Fig. S2. Initial Rates of C–H/C–D Addition of N-methylpyrrolidine to Styrene

- $y = 7.28145 + 0.1661x$
 - $R^2 = 0.99822$

- $y = -2.64113 + 0.08437x$
 - $R^2 = 0.99852$
6. Dialkylation of 1k to give 3k

Scheme S1. A Plausible Mechanism for the Formation of 3k
7. References

8. 1H and 13C NMR spectra of products
3d

C\textsubscript{2}H\textsubscript{5}N

Et

Et