Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2016

Synthesis of Malhamensilipin A Exploiting Iterative Epoxidation/Chlorination: Experimental and Computational Analysis of Epoxide-Derived Chloronium Ions

Jan Saska^a, William Lewis,^a Robert Paton^{*b} and Ross M. Denton^{*a} ^aSchool of Chemistry, University of Nottingham, University Park, NG7 2RD ^bChemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK

SUPPORTING INFORMATION

Table of Contents

General experimental procedures	S2
Experimental Procedures and Characterization of Novel Compounds	S3
II.A Synthesis of the C12–C24 fragments	S3
II.B Opening of the C13-C14 epoxide – model system	S 8
II.C Synthesis of the C1–C11 fragments	S9
II.D Julia-Kocienski olefination	S12
II.E Opening of the C13-C14 epoxide	S14
II.F Synthesis Completion	S15
NMR Spectra	S22
X-Ray Crystallography Data	S82
Computational Data	S84
	General experimental procedures Experimental Procedures and Characterization of Novel Compounds II.A Synthesis of the C12–C24 fragments II.B Opening of the C13-C14 epoxide – model system II.C Synthesis of the C1–C11 fragments II.D Julia-Kocienski olefination II.E Opening of the C13-C14 epoxide II.F Synthesis Completion NMR Spectra X-Ray Crystallography Data Computational Data

I. General experimental procedures

Unless stated otherwise, all reactions were carried out under an atmosphere of nitrogen. All glassware was flame dried or oven dried and allowed to cool under a stream of nitrogen before use. Cooling to 0 °C was effected using an ice-water bath. Cooling to temperatures below 0 °C was effected using dry ice-acetone mixtures. Degassing was achieved by purging nitrogen through the appropriate solution for 15 min. The term petroleum ether refers to the fraction with boiling point between 40 and 60 °C.

Commercially available solvents and reagents were used as supplied with the following exceptions. Toluene, THF and diethyl ether were collected from a solvent tower, where a degassed solvent was passed through two columns of activated alumina and a 7 micron filter under a 4 bar pressure, and stored under nitrogen atmosphere over sodium wire. Benzene, HMPA and CH₂Cl₂ were stirred with calcium hydride for 2 h, distilled and stored under a nitrogen atmosphere over activated 4 Å molecular sieves. Triflic anhydride was stirred with phosphorus pentoxide for 2 h, distilled, and stored under a nitrogen atmosphere;¹ titanium isopropoxide was distilled under vacuum and stored under a nitrogen atmosphere; 18-crown-6 was dried under vacuum at 60 °C for 16 h prior to use; commercially available *m*CPBA (3.00 g) was dissolved in Et₂O (20.0 mL) and washed with a pH 7.5 buffer solution (3 x 15.0 mL). The organic layer was dried (MgSO₄) and carefully concentrated *in vacuo* to give pure *m*CPBA (1.50 g). The pH 7.5 buffer solution of KH₂PO₄ (25.0 mL) and water (34.0 mL).²

Reactions were monitored using thin layer chromatography on Merck TLC silica gel 60 F_{254} pre-coated aluminium sheets with fluorescent indicator. Sheets were visualised using ultraviolet light (254 nm) and/or KMnO₄ solution, as appropriate. Flash column chromatography was performed using Aldrich silica gel 60, 40–63 µm, unless otherwise noted.

Melting points were measured on a Stuart SMP 3 instrument. Optical rotations were measured on a BS ADP440 instrument as solutions of a known concentration in chloroform unless otherwise noted. Infrared spectra were recorded on a Bruker Tensor 27 instrument as dilute chloroform solutions. Mass spectra were acquired on a VG micromass 70E, VG Autospec or Micromass LCTOF.

Bruker DPX400, Bruker AV400, Bruker AV(III)400 or Bruker AV(III)500 spectrometers were used to record all ¹H and ¹³C NMR spectra of dilute solutions of the appropriate compound in the indicated deuterated solvent. All chemical shifts (δ) are reported in parts per million (ppm) relative to residual solvent peaks. All chemical shifts are reported relative to chloroform ($\delta_H = 7.27$ ppm, $\delta_C = 77.0$ ppm), benzene ($\delta_H = 7.16$ ppm, $\delta_C = 128.4$ ppm), methanol ($\delta_H = 4.87$ ppm, $\delta_C = 49.2$ ppm) or acetone ($\delta_H = 2.05$ ppm, $\delta_C = 29.9$ ppm). Coupling constants (*J*) are reported in Hertz and are reported after averaging. The multiplicity of a ¹H NMR signal is designated by one of the following abbreviations: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad signal. The "multiplicities" of ¹³C NMR signals were assigned using a DEPT sequence. Where appropriate, assignments were aided using COSY, HMQC and HMBC spectra.

Mass spectra were acquired on a VG micromass 70E, VG Autospec or Micromass LCTOF.

¹ Link, A. J.; Vink, M. K. S.; Tirrell, D. A. Nat. Protoc., **2007**, 2, 1879–1883.

² Aggarwal, V. K.; Gultekin, Z.; Grainger, R. S.; Adams, H.; Spargo, P. L. J. Chem. Soc., Perkin. Trans. 1, **1998**, 2771–2782.

II. Experimental Procedures and Characterisation of Novel Compounds

(2S, 3R)-2,3-Epoxyundecan-1-al (12)³

To a solution of (*S*)-(-)- α , α -diphenyl-2-pyrrolidinemethanoltrimethylsilyl ether (193 mg, 0.59 mmol) in CHCl₃ (50.0 mL) was added *E*-2-undecen-1-al (**11**) (1.18 mL, 5.94 mmol) and H₂O₂ (0.73 mL, 7.13 mmol of a 30% w/v aq. solution). The reaction mixture was stirred at r. t. for 3 hours. The reaction mixture was then diluted with H₂O (50.0 mL) and extracted with CH₂Cl₂ (3x50.0 mL). The combined organics were dried (MgSO₄) and concentrated *in vacuo*. Flash column chromatography (2:1, petroleum ether/Et₂O) gave **13** (996 mg, 91%, 94% *ee*) as a colourless oil.

The enantiomeric excess was measured by GC on Chromasil CP-Chirasil-Dex CB column. Temperature program: 70 °C to 160 °C, rate: 10 °C/min, hold 1 min, 160 °C to 200 °C, rate: 80 °C/min, hold 5 min. R_t (min) = major enantiomer 14.6 min, minor enantiomer 15.1 min.

 $[\alpha]_{D} = -23.1 \ (c = 1.0, \text{EtOH}) \ [\text{lit.}^{3} \ [\alpha]_{D} = -21.4 \ (c = 1.0, \text{EtOH})\]; \ ^{1}\text{H NMR} \ (400\text{MHz}, \text{CDCl}_{3}) \\\delta 9.02 \ (d, J = 6.3, 1\text{H}, \text{H-1}), 3.23 \ (ddd, J = 5.9, 5.1, 1.9, 1\text{H}, \text{H-3}), 3.14 \ (dd, J = 6.3, 1.9, 1\text{H}, \text{H-2}), 1.70-1.63 \ (m, 2\text{H}, \text{H-4}), 1.37-1.28 \ (m, 12\text{H}), 0.89 \ (t, J = 6.9, 3\text{H}, \text{H-11}); \ ^{13}\text{C NMR} \ (101 \ \text{MHz}, \text{CDCl}_{3}) \ \delta \ 198.6 \ (\text{C(O)H}), 59.3 \ (\text{CH}), 56.9 \ (\text{CH}), 31.9 \ (\text{CH}_{2}), 31.3 \ (\text{CH}_{2}), 29.5 \ (\text{CH}_{2}), 29.3 \ (\text{CH}_{2}), 29.2 \ (\text{CH}_{2}), 25.9 \ (\text{CH}_{2}), 22.7 \ (\text{CH}_{2}), 14.2 \ (\text{CH}_{3}); \ \text{IR} \ (\text{CHCl}_{3}) \ v_{\text{max}} 2929, 2857, \ 1728, \ 1466, \ 1251, \ 851 \ \text{cm}^{-1}; \ \text{HRMS} \ (\text{ESI}^+) \ \text{C}_{11}\text{H}_{20}\text{O}_{2}\text{Na}^+ \ [\text{M+Na}]^+ \ m/z \ \text{calcd.} \ 184.1463, \ \text{found} \ 184.1471.$

Peak results :					Peak results :								
Index	Name	Time [Min]	Quantity [% Area]	Height [uV]	Area [uV.Min]	Area % [%]	Index	Name	Time [Min]	Quantity [% Area]	Height [uV]	Area [uV.Min]	Area % [%]
1	UNKNOWN	14.67	50.07	10682.1	1566.7	50.068	1	UNKNOWN	14.60	96.96	16373.5	2949.9	96.960
2	UNKNOWN	15.07	49.93	8786.5	1562.5	49.932	2	UNKNOWN	15.14	3.04	626.3	92.5	3.040
Total			100.00	19468.6	3129.2	100.000	Total			100.00	16999.9	3042.4	100.000

Ethyl (4R,5R,E)-4,5-epoxytridec-2-enoate (10)

To a suspension of sodium hydride (788 mg, 19.7 mmol of a 60% dispersion in mineral oil) in THF (90 mL) at 0 °C was added triethyl phosphonoacetate (3.91 mL, 19.7 mmol) and the reaction mixture was stirred at r. t. for 1 hour. The reaction mixture was then cooled to -78

³ Matsuo, J.; Iida, D.; Yamanaka, H.; Mukaiyama, T. *Tetrahedron*, **2003**, 59, 6739–6750.

°C, a solution of aldehyde **12** (2.42 g, 13.1 mmol) in THF (40.0 mL) was added, and the reaction mixture was stirred at -78 °C for 30 min and then at r. t. for further 1 hour. The reaction mixture was then diluted with Et₂O (100 mL), washed with H₂O (3x150 mL), dried (MgSO₄) and concentrated *in vacuo*. Flash column chromatography (2:1, petroleum ether/Et₂O) gave **10** (3.01 g, 92%) as a colourless oil.

[α]_D = 1.3 (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.68 (dd, J = 15.7, 7.2, 1H, H-3), 6.12 (d, J = 15.7, 1H, H-2), 4.21 (q, J = 7.1, 1H, RCO₂CH₂CH₃), 3.21 (dd, J = 7.2, 2.0, 1H, H-4), 2.89 (ddd, J = 5.6, 5.6, 2.0, 1H, H-5), 1.64–1.56 (m, 2H, H-6), 1.37–1.25 (m, 15H), 0.89 (t, J = 6.9, 3H, H-13); ¹³C NMR (101 MHz, CDCl₃) δ 165.8 (C), 144.9 (CH), 123.6 (CH), 61.6 (CH), 60.7 (CH₂), 56.4 (CH), 32.0 (CH₂), 31.9 (CH₂), 29.5 (CH₂), 29.4 (CH₂), 29.3 (CH₂), 25.9 (CH₂), 22.7 (CH₂), 14.3 (CH₃), 14.2 (CH₃); IR (CHCl₃) v_{max} 2929, 2857, 1714, 1657, 1466, 1393, 1260, 852 cm⁻¹; HRMS (ESI⁺) C₁₅H₂₆O₃Na⁺ [M+Na]⁺ m/z calcd. 277.1774, found 277.1772.

Ethyl (4S,5S,E)-4,5-dichlorotridec-2-enoate (13)

To a solution of triphenylphosphine oxide (367 mg, 1.32 mmol) in toluene (10.0 mL) was added oxalyl chloride (0.11 mL, 1.32 mmol) and the reaction mixture was stirred at r. t. for 15 minutes. Solution of epoxide **10** (2.25 g, 8.85 mmol) in toluene (10.0 mL) and a solution of oxalyl chloride (0.87 mL, 10.2 mmol) in toluene (10.0 mL) were added separately but simultaneously *via* syringe pump over 6 hours at 90 °C. The reaction mixture was then cooled to r. t. and concentrated *in vacuo*. Flash column chromatography (3:2, petroleum ether/CH₂Cl₂) gave **13** (1.40 g, 51%) and **14** (1.09 g, 45%) as colourless oils.

[α]_D = -25.3 (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.00 (dd, J = 15.4, 7.2, 1 H, H-3), 6.15 (dd, J = 15.4, 1.2, 1 H, H-2), 4.71 (ddd, J = 7.2, 3.7, 1.2, 1 H, H-4), 4.24 (q, J = 7.2, 2 H, RCO₂C<u>H₂CH₃</u>), 4.09 (ddd, J = 10.0, 10.0, 3.7, 1 H, H-5), 2.02–1.92 (m, 1 H, H-6), 1.75– 1.64 (m, 1 H, H-6), 1.48–1.03 (m, 15 H), 0.89 (t, J = 6.9, 3 H, H-13); ¹³C NMR (101 MHz, CDCl₃) δ 165.5 (C), 141.7 (CH), 125.4 (CH), 64.2 (CH), 62.6 (CH), 61.0 (CH₂), 33.7 (CH₂), 31.9 (CH₂), 29.4 (CH₂), 29.3 (CH₂), 29.0 (CH₂), 26.6 (CH₂), 22.7 (CH₂), 14.3 (CH₃), 14.2 (CH₃); IR (CHCl₃) v_{max} 2928, 2857, 1717, 1466, 1279, 1178, 909 cm⁻¹; HRMS (ESI⁺) C₁₅H₂₆³⁵Cl₂O₂Na⁺ [M+Na]⁺ *m/z* calcd. 331.1202, found 331.1213.

Ethyl (2E,4Z)-4-chlorotrideca-2,4-dienoate (14)

¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, J = 14.8, 1 H, H-3), 6.29 (d, J = 14.8, 1 H, H-2), 6.12 (t, J = 8.2, 1 H, H-5), 4.23 (q, J = 7.2, 2 H, RCO₂CH₂CH₃), 2.37–2.26 (m, 2 H), 1.50–1.38 (m, 2 H), 1.36–1.19 (m, 13 H), 0.87 (t, J = 6.7, 3 H, H-13); ¹³C NMR (101 MHz, CDCl₃) δ 166.7 (C), 139.7 (CH), 135.8 (CH), 128.4 (C), 122.1 (CH), 60.6 (CH₂), 31.8 (CH₂), 29.3 (CH₂), 29.1 (CH₂), 29.1 (CH₂), 29.0 (CH₂), 28.9 (CH₂), 22.6 (CH₂), 14.2 (CH₃), 14.0 (CH₃); IR (CHCl₃) v_{max} 2958, 2929, 2857, 1709, 1631, 1466, 1306, 1269, 1183, 1034, 964 cm⁻¹; HRMS (ESI⁺) C₁₅H₂₅³⁵ClO₂Na⁺ [M+Na]⁺ m/z calcd. 295.1435, found 295.1440.

(2S,3S,4S,5S)-Ethyl 4,5-dichloro-2,3-dihydroxytridecanoate (15)

To a solution of dichloride **13** (0.91 g, 2.94 mmol) in a 2:1 acetone/water mixture (30.0 mL) at 0 °C was added osmium tetroxide (0.90 mL, 0.15 mmol of a 4% w/v solution in H₂O) and NMO (0.67 mL, 3.23 mmol of a 50% w/v solution in H₂O) and the reaction mixture was stirred at r. t. for 16 hours. The reaction was then quenched with sodium bisulfite (30.0 mL of 20% w/v aq. solution) and, after a further 3 hours stirring, was extracted with CH_2Cl_2 (3x50.0 mL). The combined organics were dried (MgSO₄) and concentrated *in vacuo*. Flash column chromatography (3:1, petroleum ether/EtOAc) gave **15** (823 mg, 81%) as a colourless solid. Recrystallisation from minimal amount of CH_2Cl_2 /pentane gave analytically pure sample of **15** as colourless needles.

[α]_D = -25.3 (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 4.68 (dd, J = 4.3, 0.9, 1 H, H-2), 4.53 (ddd, J = 8.8, 5.4, 1.8, 1 H, H-5), 4.40–4.27 (m, 2 H, RCO₂CH₂CH₃), 4.24 (dd, J = 9.6, 0.9, 1 H, H-3), 4.15 (dd, J = 9.6, 1.8, 1 H, H-4), 3.18 (d, J = 4.3, 1 H, RO<u>H</u>), 2.36 (d, J = 9.8, 1 H, RO<u>H</u>), 2.07–1.96 (m, 1 H, H-6), 1.87–1.78 (m, 1 H, H-6), 1.46–1.03 (m, 15 H), 0.89 (t, J = 6.9, 3 H, H-13); ¹³C NMR (101 MHz, CDCl₃) δ 173.2 (C), 73.4 (CH), 70.1 (CH), 63.1 (CH), 62.8 (CH₂), 61.7 (CH), 36.4 (CH₂), 31.9 (CH₂), 29.5 (CH₂), 29.3 (CH₂), 29.1 (CH₂), 26.6 (CH₂), 22.7 (CH₂), 14.2 (CH₃), 14.2 (CH₃); IR (CHCl₃) v_{max} 3605, 3544, 2928, 2857, 1734, 1466, 1269, 1113, 1058, 909 cm⁻¹; HRMS (ESI⁺) C₁₅H₂₈³⁵Cl₂O₄Na⁺ [M+Na]⁺ m/z calcd. 365.1262, found 365.1244; m. p. 67–69 °C.

Ethyl ((2R,3S,4S,5S)-4,5-dichloro-2,3-epoxytridecanoate (16)⁴

To a solution of DABCO (1.20 g, 10.7 mmol) in CH_2Cl_2 (11.0 mL) at -78 °C was added triflic anhydride (0.60 mL, 3.57 mmol) dropwise over 30 seconds and the reaction mixture was stirred for 10 min. A solution of diol **15** (612 mg, 1.78 mmol) in CH_2Cl_2 (6.00 mL) was precooled to -78 °C and added to the reaction mixture *via* a cannula. The reaction mixture was warmed to r. t. over 16 hours and then quenched with sat. aq. NaHCO₃ (20.0 mL). The aqueous layer was extracted with CH_2Cl_2 (3x20.0 mL). The combined organics were dried (MgSO₄) and concentrated *in vacuo*. Flash column chromatography (1:1, CH_2Cl_2 /petroleum ether) gave **16** (410 mg, 71%) as a colourless oil.

 $[\alpha]_{D} = -61.2 \ (c = 1.0, CH_2Cl_2) \ [lit.^4 \ [\alpha]_{D} = -65.8 \ (c = 1.18, CH_2Cl_2)]; \ ^1H \ NMR \ (400 \ MHz, C_6D_6) \ \delta \ 4.46 \ (dd, J = 8.6, 2.5, 1 \ H, H-4), \ 4.21 \ (ddd, J = 8.9, 5.0, 2.5, 1 \ H, H-5), \ 3.93-3.80 \ (m, 2 \ H, RCO_2C\underline{H}_2CH_3), \ 3.51 \ (dd, J = 8.6, 4.3, 1 \ H, H-3), \ 3.19 \ (d, J = 4.3, 1 \ H, H-2), \ 1.88-1.78 \ (m, 1 \ H, H-6), \ 1.58-1.48 \ (m, 1 \ H, H-6), \ 1.40-1.00 \ (m, 12 \ H), \ 0.91 \ (t, J = 7.2, 3 \ H, RCO_2CH_2C\underline{H}_3), \ 0.86 \ (t, J = 7.1, 3 \ H, H-13); \ ^{13}C \ NMR \ (101 \ MHz, C_6D_6) \ \delta \ 167.8 \ (C), \ 64.1 \ (CH), \ 62.1 \ (CH_2), \ 60.2 \ (CH), \ 58.0 \ (CH), \ 52.9 \ (CH), \ 36.6 \ (CH_2), \ 32.5 \ (CH_2), \ 30.0 \ (CH_2), \ 29.9 \ (CH_2), \ 29.5 \ (CH_2), \ 26.9 \ (CH_2), \ 23.4 \ (CH_2), \ 14.7 \ (CH_3), \ 14.3 \ (CH_3); \ IR \ (CHCl_3) \ v_{max} \ 2928,$

⁴ Bedke, D. K.; Shibuya, G. M.; Pereira, A. R.; Gerwick, W. H.; Vanderwal, C. D. J. Am. Chem. Soc., **2010**, 132, 2542–2543.

2857, 1744, 1466, 1382, 1017 cm⁻¹; HRMS (ESI⁺) $C_{15}H_{26}^{35}Cl_2O_3Na^+$ [M+Na]⁺ m/z calcd. 347.1151, found 347.1164.

(2*R*,3*S*,4*S*,5*S*)-4,5-Dichloro-2,3-epoxytridecan-1-al (9a)⁴

To a solution of ester **16** (350 mg, 1.08 mmol) in toluene (11.0 mL) at -78 °C was added DIBAL (1.61 mL, 1.61 mmol of 1.0 M solution in hexanes) over 30 seconds and the reaction mixture was stirred for 1 hour. Saturated aqueous potassium sodium tartrate (10.0 mL) and Et₂O (10.0 mL) were added to the reaction mixture and stirred at r. t. overnight. The aqueous layer was extracted with Et₂O (3x10.0 mL). The combined organics were dried (MgSO₄) and concentrated *in vacuo*. Flash column chromatography (1:1, CH₂Cl₂/petroleum ether) gave **9a** (286 mg, 94%) as a colourless solid.

 $[\alpha]_{D} = -34.2 \ (c = 1.1, CH_2Cl_2) \ [lit.^4 \ [\alpha]_{D} = -35.3 \ (c = 0.25, CH_2Cl_2)]; \ ^1H \ NMR \ (400 \ MHz, C_6D_6) \ \delta \ 8.91 \ (d, J = 2.1, 1 \ H, H-1), 4.05 \ (ddd, J = 9.4, 4.5, 2.6, 1 \ H, H-5), 3.72 \ (dd, J = 8.7, 2.6, 1 \ H, H-4), 3.41 \ (dd, J = 8.7, 4.5, 1 \ H, H-3), 2.81 \ (dd, J = 4.5, 2.1, 1 \ H, H-2), 1.80-1.70 \ (m, 1 \ H, H-6), 1.41-1.02 \ (m, 13 \ H), 0.92 \ (t, J = 7.1, 3 \ H, H-13); \ ^{13}C \ NMR \ (101 \ MHz, C_6D_6) \ \delta \ 195.5 \ (CH), \ 63.9 \ (CH), \ 60.0 \ (CH), \ 59.7 \ (CH), \ 57.4 \ (CH), \ 36.3 \ (CH_2), \ 32.5 \ (CH_2), \ 30.0 \ (CH_2), 29.9 \ (CH_2), 29.5 \ (CH_2), 26.8 \ (CH_2), 23.4 \ (CH_2), 14.7 \ (CH_3); \ IR \ (CHCl_3) \ v_{max} \ 2928, 2856, \ 1731, \ 1466, \ 1386, \ 1265, \ 1148 \ cm^{-1}; \ HRMS \ (ESI^+) \ C_{13}H_{22}^{\ 35}Cl_2O_2Na^+ \ [M+Na]^+ \ m/z \ calcd. \ 335.0889, \ found \ 335.0906; \ m. \ p. \ 59-61 \ ^{\circ}C \ (lit.^4 \ m. \ p. \ 58-60 \ ^{\circ}C).$

(4*S*,5*S*,*E*)-4,5-Dichlorotridec-2-en-1-ol (17)

To a solution of unsaturated ester **13** (140 mg, 0.45 mmol) in toluene (4.50 mL) at 0 °C was added DIBAL (1.36 mL, 1.36 mmol of 1.0 M solution in toluene) and the reaction mixture was stirred at 0 °C for 15 min. A saturated aqueous solution of potassium sodium tartrate (7.00 mL) and Et₂O (5.00 mL) were added and the reaction mixture was stirred at r. t. for 16 h. The reaction mixture was extracted with Et₂O (3x7.00 mL) and the combined organics were dried (MgSO₄) and concentrated *in vacuo*. Flash column chromatography (1:1 petroleum ether/Et₂O) gave **17** (107 mg, 89%) as a colourless oil.

[α]_D = -25.4 (c = 0.3, CHCl₃); ¹H NMR (400 MHz, C₆D₆) δ 5.85 (ddt, J = 15.3, 8.4, 1.8, 1 H, H-3), 5.56 (dtd, J = 15.3, 4.7, 0.7, 1 H, H-2), 4.35 (ddd, J = 8.4, 3.6, 0.7, 1 H, H-4), 3.82 (ddd, J = 9.9, 3.6, 3.6, 1 H, H-5), 3.68 (br, 2 H, H-1), 1.85–1.76 (m, 1 H), 1.73–1.62 (m, 1 H), 1.56–1.45 (m, 1 H), 1.33–1.08 (m, 12 H), 0.92 (t, J=7.0 Hz, 3 H, H-13); ¹³C NMR (101 MHz, C₆D₆) δ 135.6 (CH), 126.6 (CH), 66.1 (CH), 65.6 (CH), 62.3 (CH₂), 34.6 (CH₂), 32.6 (CH₂), 30.1 (CH₂), 30.0 (CH₂), 29.6 (CH₂), 27.2 (CH₂), 23.4 (CH₂), 14.7 (CH₃); IR (CHCl₃) v_{max} 3611, 2928, 2857, 1466, 1380, 1261, 1089, 971 cm⁻¹; HRMS (ESI⁺) C₁₃H₂₄³⁵Cl₂NaO⁺ [M+Na]⁺ m/z calcd. 289.1096, found 289.1097.

(2*R*,3*S*,4*S*,5*S*)-4,5-dichloro-2,3-epoxy-tridecan-1-ol (18)

To a suspension of powdered 4Å molecular sieves (60.0 mg) in CH₂Cl₂ (4.00 mL) at -20 °C was added (+)-diethyl-L-tartrate (0.48 mL, 0.48 mmol of 1.0 M solution in CH₂Cl₂) and Ti(O*i*-Pr)₄ (0.40 mL, 0.40 mmol of 1.0 M solution in CH₂Cl₂) and the reaction mixture was stirred for 30 min after which *t*-BuOOH (0.46 mL, 2.32 mmol of 5.0 M solution in decane) was added and the reaction mixture was stirred for further 30 min. A solution of allylic alcohol **17** (107 mg, 0.40 mmol) in CH₂Cl₂ (2.00 mL) was added and the reaction mixture was stirred at -20 °C for 16 h. A solution of citric acid (108 mg) and FeSO₄ (324 mg) in H₂O (3.00 mL) was added and the reaction mixture was stirred at r. t. for 1 h and then filtered through a pad of celite. The filtrate was extracted with EtOAc (3x5.00 mL). The combined organics were dried (Na₂SO₄) and concentrated *in vacuo*. Flash column chromatography (1:1 petroleum ether/Et₂O) gave **18** (72 mg, 64%) as a colourless oil.

[α]_D = -10.4 (c = 0.3, CHCl₃); ¹H NMR (400 MHz, C₆D₆) δ 4.04 (ddd, J = 9.2, 4.6, 2.0, 1 H, H-5), 3.37–3.30 (m, 3 H, H-1 + H-3 + H-4), 3.15 (ddd, J = 12.7, 6.7, 4.2, 1 H, H-1), 2.69 (ddd, J = 4.2, 2.6, 1.4, 1 H, H-2), 1.89–1.77 (m, 1 H), 1.58–1.49 (m, 1 H), 1.39–1.36 (m, 1 H), 1.34–1.06 (m, 12 H), 0.93 (t, J = 7.0 Hz, 3 H); ¹³C NMR (101 MHz, C₆D₆) δ 64.8 (CH), 63.7 (CH), 61.3 (CH₂), 59.3 (CH), 56.0 (CH), 36.3 (CH₂), 32.6 (CH₂), 30.1 (CH₂), 29.9 (CH₂), 29.6 (CH₂), 27.0 (CH₂), 23.4 (CH₂), 14.7 (CH₃); IR (CHCl₃) v_{max} 3604, 2957, 2929, 2857, 1465, 1379, 1261, 1081, 1021, 904 cm⁻¹; HRMS (ESI⁺) C₁₃H₂₄³⁵Cl₂NaO₂⁺ [M+Na]⁺ m/z calcd. 305.1046, found 305.1053.

Ethyl (4S,5S,6S,7S,E)-6,7-dichloro-4,5-epoxypentadec-2-enoate (19)

To a suspension of sodium hydride (33.0 mg, 0.82 mmol of 60% dispersion in mineral oil) in THF (3.00 mL) at 0 °C was added triethyl phosphonoacetate (**17**) (0.16 mL, 0.82 mmol) and the reaction mixture was stirred at r. t. for 1 hour. The reaction mixture was then cooled to -78 °C and a solution of aldehyde **9a** (154 mg, 0.55 mmol) in THF (2.50 mL) was added. The reaction mixture was stirred at -78 °C for 30 min and then at r. t. for a further 1 h. The reaction mixture was then diluted with Et₂O (5.00 mL), washed with H₂O (3x5.00 mL), dried (MgSO₄) and concentrated *in vacuo*. Flash column chromatography (1:1, CH₂Cl₂/petroleum ether) gave **19** (164 mg, 85%) as a colourless oil.

[α]_D = -17.0 (c = 1.0, CHCl₃); ¹H NMR (400 MHz, C₆D₆) δ 6.85 (dd, J = 15.7, 5.7, 1 H, H-3), 6.09 (dd, J = 15.7, 1.1, 1 H, H-2), 4.07 (ddd, J = 9.5, 3.9, 2.5, 1 H, H-7), 3.95 (q, J = 7.1, 2 H, RCO₂CH₂CH₃), 3.54 (dd, J = 9.1, 2.5, 1 H, H-6), 3.47 (dd, J = 9.1, 4.3, 1 H, H-5), 3.03 (ddd, J = 5.7, 4.3, 1.1, 1 H, H-4), 1.83–1.70 (m, 1 H, H-8), 1.39–1.02 (m, 13 H), 0.94–0.90 (m, 6 H, RCO₂CH₂CH₃ + H-15); ¹³C NMR (101 MHz, C₆D₆) δ 165.1 (C), 140.1 (CH), 127.0 (CH), 64.1 (CH), 61.0 (CH₂), 59.9 (CH), 56.0 (CH), 36.2 (CH₂), 32.5 (CH₂), 30.0 (CH₂), 29.9 (CH₂), 29.6 (CH₂), 26.9 (CH₂), 23.4 (CH₂), 14.7 (CH₃), 14.5 (CH₃); IR (CHCl₃) v_{max} 2927, 2855, 1734, 1457, 1192, 1029 cm⁻¹; HRMS (ESI⁺) C₁₇H₂₈³⁵Cl₂O₃Na⁺ [M+Na]⁺ m/z calcd. 373.1308, found 373.1321.

(4R,5S,6S,7S,E)-Ethyl-4,6,7-trichloro-5-hydroxypentadec-2-enoate (20)

To a solution of epoxide **19** (97.0 mg, 0.28 mmol) in Et₂O (1.00 mL) was added HCl (2.76 mL, 2.76 mmol of 1.0 M solution in Et₂O) at 0 °C and the reaction mixture was stirred at r. t. for 16 hours. The reaction mixture was concentrated *in vacuo*. Flash column chromatography (CH₂Cl₂) gave **20** (101 mg, 94%) as a colourless solid. Recrystallisation from minimal amount of CH₂Cl₂ gave an analytically pure sample of **20** as colourless needles.

[α]_D = 20.8 (c = 0.3, CHCl₃); ¹H NMR (400 MHz, C₆D₆) δ 6.93 (dd, J = 15.4, 7.2, 1 H, H-3), 5.97 (dd, J = 15.4, 1.4, 1 H, H-2), 4.92 (apparent dt, J = 7.1, 1.3, 1 H, H-4), 4.36 (ddd, J = 9.4, 4.5, 1.5, 1 H, H-7), 4.01 (q, J = 7.0, 2 H, RCO₂CH₂CH₃), 4.00 (dd, J = 9.4, 1.6, 1 H, H-6), 3.92 (ddd, J = 9.5, 8.5, 1.4, 1 H, H-5), 1.99–1.87 (m, 1 H, H-8), 1.73 (d, J = 8.5, 1 H, RO<u>H</u>), 1.47–1.10 (m, 13 H), 0.97 (t, J = 7.2, 3 H, RCO₂CH₂CH₂), 0.92 (t, J = 7.1, 3 H, H-15); ¹³C NMR (101 MHz, C₆D₆) δ 165.7 (C), 143.3 (CH), 125.5 (CH), 74.3 (CH), 65.3 (CH), 62.5 (CH), 62.3 (CH), 61.0 (CH₂), 37.0 (CH₂), 32.6 (CH₂), 30.1 (CH₂), 29.9 (CH₂), 29.7 (CH₂), 27.3 (CH₂), 23.4 (CH₂), 14.7 (CH₃), 14.5 (CH₃); IR (CHCl₃) v_{max} 3601, 2928, 2855, 1718, 1465, 1371, 1266, 1178 cm⁻¹; HRMS (ESI⁺) C₁₇H₂₉³⁵Cl₃O₃Na⁺ [M+Na]⁺ *m/z* calcd. 409.1074, found 409.1079; m. p. 70–72 °C; Elemental analysis C₁₇H₂₉Cl₃O₃ calcd. (%) C = 52.66, H = 7.54, found (%) C = 52.65, H = 7.55.

II.C Synthesis of the C₁–C₁₁ fragment

11-Bromoundecan-1-al (23)

To a solution of PCC (1.29 g, 5.97 mmol) in CH_2Cl_2 (20.0 mL) were added silica gel (1.29 g) and 11-bromoundecan-1-ol (**22**) (1.00 g, 3.98 mmol). Reaction mixture was stirred at r. t. for 16 h and filtered through a pad of celite. The filtrate was concentrated *in vacuo*. Flash column chromatography (4:1 petroleum ether/Et₂O) gave **23** (0.79 g, 80%) as a colourless oil.

¹H NMR (400 MHz, CDCl₃) δ 9.77 (t, J = 1.8, 1 H, H-1), 3.41 (t, J = 6.8, 2 H, H-11), 2.43 (td, J = 7.3, 1.9, 2 H, H-2), 1.90–1.82 (m, 2 H), 1.67–1.59 (m, 2 H), 1.47–1.37 (m, 2 H), 1.37–1.26 (m, 10 H); ¹³C NMR (101 MHz, CDCl₃) δ 202.9 (CH), 43.9 (CH₂), 34.0 (CH₂), 32.8 (CH₂), 29.3 (CH₂), 29.3 (2x CH₂), 29.1 (CH₂), 28.7 (CH₂), 28.1 (CH₂), 22.0 (CH₂); IR (CHCl₃) v_{max} 2930, 2857, 2281, 1709, 1463, 1286, 909 cm⁻¹; HRMS (ESI⁺) C₁₁H₂₁⁷⁹BrONa⁺ [M+Na]⁺ *m/z* calcd. 271.0668, found 271.0663.

11-Bromo-2,2-dichloroundecan-1-ol (24)

To a solution of 11-bromoundecan-1-al (23) (0.68 g, 2.73 mmol) in 1,2-dichloroethane (13.5 mL) were added pyrrolidine (44.0 μ L, 0.54 mmol) and NCS (0.91 g, 6.82 mmol) and the reaction mixture was stirred at 60 °C for 3 h. The reaction was quenched with sat. aq. Na₂SO₃ (15.0 mL) and extracted with EtOAc (3x15.0 mL). The combined organics were washed with sat. aq. Na₂S₂O₃ (4x50.0 mL), dried (MgSO₄) and concentrated *in vacuo* to give crude 10-bromo-2,2-dichlorodecanal (0.89 g, 99%) as a yellow oil.

To a solution of crude 10-bromo-2,2-dichlorodecanal (0.89 g, 2.73 mmol) in EtOH (4.00 mL) at 0 °C was added sodium borohydride (93.0 mg, 2.46 mmol) portionwise over 5 min. The reaction mixture was stirred at r. t. for 1 h, poured into conc. HCl (5.00 mL)/ ice mixture and exctracted with CH₂Cl₂ (3x10.0 mL). The combined organics were dried (MgSO₄) and concentrated *in vacuo*. Flash column chromatography (1:1, petroleum ether/Et₂O) gave **24** (0.81 g, 93% over 2 steps) as a colourless oil.

¹H NMR (400 MHz, CDCl₃) δ 3.91 (s, 2 H, H-1), 3.42 (t, *J* = 6.8, 2 H, H-11), 2.25–2.19 (m, 2 H), 1.91–1.82 (m, 2 H), 1.69–1.61 (m, 2 H), 1.49–1.29 (m, 11 H); ¹³C NMR (101 MHz, CDCl₃) δ 94.7 (C), 72.1 (CH₂), 43.5 (CH₂), 34.0 (CH₂), 32.8 (CH₂), 29.2 (CH₂), 29.2(CH₂), 29.0 (CH₂), 28.7 (CH₂), 28.1 (CH₂), 24.8 (CH₂); IR (CHCl₃) v_{max} 3590, 2931, 2857, 1464, 1065, 909 cm⁻¹; HRMS (ESI)⁺ C₁₁H₂₁⁷⁹Br³⁵Cl₂ONa⁺ [M+Na]⁺ *m/z* calcd. 341.0045, found 341.0042.

((11-Bromo-2,2-dichloroundecyl)oxy)triisopropylsilane (25)

To a solution of 11-bromo-2,2-dichloroundecan-1-ol (**24**) (0.81 g, 2.53 mmol) in CH_2Cl_2 (7.50 mL) at 0 °C were added TIPSOTF (0.68 mL, 2.53 mmol) and 2,6-lutidine (0.44 mL, 3.80 mmol). The reaction mixture was stirred at r. t. for 1 h, then more TIPSOTF (0.68 mL,

2.53 mmol) and 2,6-lutidine (0.44 mL, 3.80 mmol) were added. The reaction was quenched with sat. aq. NaHCO₃ (10.0 mL) and extracted with CH_2Cl_2 (3x10.0 mL). The combined organics were dried (MgSO₄) and concentrated *in vacuo*. Flash column chromatography (9:1, petroleum ether/CH₂Cl₂) gave **25** (1.18 g, 97%) as a colourless oil.

¹H NMR (400 MHz, CDCl₃) δ 4.04 (s, 2 H, H-1), 3.42 (t, J = 6.9, 2 H, H-11), 2.25–2.20 (m, 2 H), 1.91–1.82 (m, 2 H), 1.65–1.52 (m, 3 H, ROSiCH(CH₃)₂), 1.48–1.37 (m, 3 H), 1.37–1.29 (m, 8 H), 1.09 (d, J = 5.4, 18 H, ROSiCH(C<u>H₃</u>)₂); ¹³C NMR (101 MHz, CDCl₃) δ 93.5 (C), 72.4 (CH₂), 43.5 (CH₂), 34.0 (CH₂), 32.8 (CH₂), 30.9 (CH₂), 29.2 (CH₂), 29.0 (CH₂), 28.7 (CH₂), 28.1 (CH₂), 24.8 (CH₂), 17.9 (6xCH₃), 12.0 (3xCH); IR (CHCl₃) v_{max} 3042, 2941, 2867, 1463, 1125, 909 cm⁻¹; HRMS (ESI⁺) C₂₀H₄₁⁷⁹Br³⁵Cl₂OSiNa⁺ [M⁺Na]⁺ *m/z* calcd. 497.1379, found 497.1379.

5-((10,10-Dichloro-11-((triisopropylsilyl)oxy)undecyl)thio)-1-phenyl-1H-tetrazole

To a solution of alkyl bromide **25** (1.18 g, 2.48 mmol) in DMF (12.0 mL) was added sodium 1-phenyl-1*H*-tetrazole-5-thiolate (645 mg, 3.22 mmol) and stirred at r. t. for 4 h. The reaction was quenched with H_2O (20.0 mL) and extracted with EtOAc (3x30.0 mL). The combined organics were washed with H_2O (4x100 mL), dried (MgSO₄) and concentrated *in vacuo* to give the title compound (1.42 g, quantitative) as a colourless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.62–7.52 (m, 5 H, Ar<u>H</u>), 4.04 (s, 2 H, H-11), 3.41 (t, *J* = 7.4, 2 H, H-1), 2.25–2.19 (m, 2 H), 1.88–1.79 (m, 2 H), 1.64–1.55 (m, 3 H, ROSiC<u>H</u>(CH₃)₂), 1.50–1.41 (m, 2 H), 1.38–1.29 (m, 8 H), 1.16–1.12 (m, 2 H), 1.09 (d, *J* = 5.4, 18 H, ROSiCH(C<u>H₃)₂</u>); ¹³C NMR (101 MHz, CDCl₃) δ 154.5 (C), 133.8 (C), 130.0 (CH), 129.8 (2xCH), 123.9 (2xCH), 93.5 (C), 72.4 (CH₂), 43.5 (CH₂), 33.4 (CH₂), 29.3 (CH₂), 29.2 (CH₂), 29.1 (CH₂), 29.0 (CH₂), 29.0 (CH₂), 28.6 (CH₂), 24.8 (CH₂), 17.9 (6xCH₃), 12.0 (3xCH); IR (CHCl₃) v_{max} 2929, 2866, 1500, 1463, 1388, 1265, 1124, 909 cm⁻¹; HRMS (ESI⁺) C₂₇H₄₇³⁵Cl₂N₄OSSi⁺ [M+H]⁺ *m/z* calcd. 573.2611, found 573.2613.

5-((10,10-Dichloro-11-((triisopropylsilyl)oxy)undecyl)sulfonyl)-1-phenyl-1H-tetrazole (8)

To a solution of the above sulfide (2.36 g, 4.11 mmol) in EtOH (40.0 mL) at 0 °C was slowly added a solution of ammonium molybdate (240 mg, 0.21 mmol) in H_2O_2 (2.94 mL, 28.8 mmol of 30% w/v aq. solution). The reaction mixture was stirred at r. t. for 24 h, then diluted with EtOAc (50.0 mL) and stirred for further 30 min. The organic layer was washed with H_2O (3x80.0 mL), dried (MgSO₄) and concentrated *in vacuo*. Flash column chromatography (4:1, petroleum ether/Et₂O) gave **8** (2.39 g, 96%) as a colourless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.72–7.69 (m, 2 H, ArH), 7.65–7.58 (m, 3 H), 4.04 (s, 2 H, H-11), 3.77–3.71 (m, 2 H), 2.25–2.19 (m, 2 H), 2.01–1.92 (m, 2 H), 1.65–1.55 (m, 3 H, ROSiC<u>H</u>(CH₃)₂), 1.54–1.47 (m, 2 H), 1.40–1.29 (m, 9 H), 1.17–1.12 (m, 2 H), 1.08 (d, J = 5.4, 18 H, ROSiCH(C<u>H</u>₃)₂); ¹³C NMR (101 MHz, CDCl₃) δ 153.5 (C), 133.1 (C), 131.4 (CH), 129.7 (2xCH), 125.1 (2xCH), 93.5 (C), 72.4 (CH₂), 56.0 (CH₂), 43.5 (CH₂), 29.2 (CH₂), 29.0 (CH₂), 29.0 (CH₂), 28.8 (CH₂), 28.1 (CH₂), 24.8 (CH₂), 21.9 (CH₂), 17.9 (6x CH₃), 12.0 (3xCH); IR (CHCl₃) v_{max} 3009, 2943, 2866, 2281, 1596, 1498, 1463, 1343, 1153, 1014 cm⁻¹; HRMS (ESI⁺) C₂₇H₄₇³⁵Cl₂N₄O₃SSi⁺ [M+H]⁺ *m/z* calcd. 605.2510, found 605.2518.

II.D Julia-Kocienski olefination

 Table S1. Reaction optimization

Entry	Base (Equiv.)	Equiv. 8	Solvent	Additive (Equiv.)	Temp.	Deprotonation Time	Yield (%) ^b	E/Z ratio ^b
1	KHMDS (1.4)	1.2	THF	none	−78 °C	45 min.	31	1.5:1
2	NaHMDS (1.4)	1.2	THF	none	−78 °C	45 min.	48	1.5:1
3	KHMDS (1.4)	1.2	DME	none	−50 °C	45 min.	0	N/A
4	NaHMDS (1.4)	1.2	THF	none	−78 °C	90 min.	23	1.5:1
5	NaHMDS (1.4)	1.2	THF	none	−78 °C	20 min.	37	1.5:1
6	NaHMDS (1.4)	1.2	THF	none	−78 °C	5 min.	0	N/A
7	LiHMDS (1.3)	1.3	DMF/HMPA	none	−35 °C	5 min.	43	2.5:1
8	KHMDS (1.3)	1.1	THF	18-C-6 (2.2)	−78 °C	0 min.	64 (3.5:1 8a/S4)	4:1
9	KHMDS (1.3)	1.5	THF	18-C-6 (2.2)	−78 °C	0.5 min.	75	4:1
10	KHMDS (1.3)	1.5	THF	18-C-6 (2.6)	−78 °C	0.5 min.	85	4:1
11	KHMDS (1.3)	1.5	THF	18-C-6 (5.0)	−78 °C	0.5 min.	86	4:1

^aReactions were typically conducted with 0.14 mmol with respect to **9a** in 4.20 mL of solvent. ^b Isolated yield following chromatography (short silica pad).

(13*S*,14*S*,15*S*,16*S*,*E*)-15,16-Dichloro-13,14-epoxy-1-((triisopropylsilyl)oxy)tetracos-11ene (7a)

To a solution of sulfone **8** (323 mg, 0.53 mmol) and 18-crown-6 (230 mg, 0.87 mmol) in THF (1.80 mL) at -78 °C was added KHMDS (0.92 mL, 0.46 mmol of 0.5 M solution in toluene) and the reaction mixture was stirred for 0.5 min. A solution of aldehyde **9a** (100 mg, 0.36 mmol) in THF (3.60 mL) was slowly added to the reaction mixture at -78 °C and stirred at r. t. for 16 h. The reaction mixture concentrated *in vacuo*. Flash column chromatography (short plug of silica; 3:1, petroleum ether/CH₂Cl₂) gave **7a** (201 mg, 86% of 4:1 *E/Z* stereoisomers) as a colourless oil.

¹H NMR (400 MHz, C₆D₆) δ 5.78 (dt, *J* = 15.5, 6.7, 1 H, H-11), 5.32 (dd, *J* = 15.5, 6.1, 1 H, H-12), 4.25 (ddd, *J* = 8.7, 5.2, 2.9, 1 H, H-16), 4.09 (s, 2 H, H-1), 3.78 (dd, *J* = 8.9, 2.9, 1 H, H-15), 3.52 (dd, *J* = 8.9, 4.1, 1 H, H-14), 3.28 (dd, *J* = 6.1, 4.1, 1 H, H-13), 2.34–2.27 (m, 2)

H), 1.95–1.85 (m, 2 H), 1.75 - 1.67 (m, 3 H, ROSiC<u>H</u>(CH₃)₂), 1.31–1.13 (m, 25 H), 1.06 (d, J = 5.4, 18 H, ROSiCH(C<u>H</u>₃)₂), 0.92 (t, J = 7.1, 3 H, H-24); ¹³C NMR (101 MHz, C₆D₆) δ 138.8 (CH), 123.2 (CH), 94.3 (C), 73.3 (CH₂), 64.4 (CH), 61.7 (CH), 59.1 (CH), 57.5 (CH), 44.4 (CH₂), 36.6 (CH₂), 32.6 (CH₂), 30.1 (CH₂), 30.1 (CH₂), 30.0 (CH₂), 30.0 (CH₂), 29.9 (CH₂), 29.8 (CH₂), 29.7 (CH₂), 29.7 (CH₂), 29.6 (CH₂), 27.0 (CH₂), 25.7 (CH₂), 23.4 (CH₂), 18.4 (6xCH₃), 14.7 (CH₃), 12.6 (3xCH); IR (CHCl₃) v_{max} 2930, 2865, 2281, 1665, 1463, 1382, 1330, 1250, 1124, 1070, 996, 963, 920 cm⁻¹; HRMS (ESI⁺) C₃₃H₆₃³⁵Cl₄O₂Si⁺ [M+H]⁺ *m/z* calcd. 659.3346, found 659.3330.

(13*R*,14*S*,15*S*,16*S*,*E*)-15,16-dichloro-13,14-epoxy-1-((triisopropylsilyl)oxy)tetracos-11ene (8b)

To a solution of alcohol **18** (72.0 mg, 0.25 mmol) in CH_2Cl_2 (2.50 mL) at 0 °C was added DMP (162 mg, 0.38 mmol) and the reaction mixture was stirred at r. t. for 3 h. A saturated aqueous solution of $Na_2S_2O_4$ (2.00 mL) and a saturated aqueous solution of $NaHCO_3$ (2.00 mL) were added and the reaction mixture was stirred at r. t. for 30 min and extracted with CH_2Cl_2 (3x 5.00 mL). The combined organics were dried (MgSO₄) and concentrated *in vacuo* to give crude aldehyde **9b**, which was used without purification.

To a solution of sulfone **8** (204 mg, 0.34 mmol) and 18-crown-6 (154 mg, 0.58 mmol) in THF (1.80 mL) at -78 °C was added KHMDS (0.58 mL, 0.29 mmol of 0.5 M solution in toluene) and the reaction mixture was stirred for 0.5 min. A solution of crude aldehyde **9b** (70.0 mg, 0.25 mmol) in THF (3.60 mL) was slowly added to the reaction mixture at -78 °C and stirred at r. t. for 16 h. The reaction mixture concentrated *in vacuo*. Flash column chromatography (short plug of silica; 3:1, petroleum ether/CH₂Cl₂) gave **7b** (70 mg, 48% of 7:1 *E/Z* stereoisomers) as a colourless oil.

[α]_D = 16.6 (c = 0.5, CHCl₃); ¹H NMR (400 MHz, C₆D₆) δ 5.80 (dt, J = 15.5, 6.8, 1 H, H-11), 5.12 (ddt, J = 15.5, 7.9, 1.4, 1 H, H-12), 4.14 (ddd, J = 9.2, 4.7, 2.3, 1 H, H-16), 4.10 (s, 2 H, H-1), 3.44–3.37 (m, 2 H, H-14 + H-15), 3.18 (dd, J = 7.9, 1.3, 1 H, H-13), 2.36–2.29 (m, 2 H), 1.93–1.86 (m, 3 H), 1.77–1.68 (m, 3 H), 1.64–1.54 (m, 1 H), 1.41–1.24 (m, 9 H), 1.24–0.97 (m, 33 H), 0.93 (t, J=7.1 Hz, 3 H); ¹³C NMR (101 MHz, C₆D₆) δ 137.4 (CH), 126.2 (CH), 93.7 (C), 72.7 (CH₂), 64.7 (CH), 63.1 (CH), 59.9 (CH), 59.0 (CH), 43.8 (CH₂), 35.7 (CH₂), 32.4 (CH₂), 32.0 (CH₂), 29.5 (CH₂), 29.4 (CH₂), 29.3 (CH₂), 29.2 (CH₂), 29.1 (CH₂), 28.8 (CH₂), 26.4 (CH₂), 25.1 (CH₂), 22.8 (CH₂), 17.8 (6xCH₃), 14.1 (CH₃), 12.0 (3xCH); IR (CHCl₃) v_{max} 2929, 2866, 1464, 1382, 1124, 1070, 883 cm⁻¹; HRMS (ESI⁺) C₃₃H₆₆³⁵Cl₄NO₂Si⁺ [M+NH₄]⁺ m/z calcd. 676.3611, found 676.3580.

Table S2. Reaction optimization

Entry	Reagent	Solvent	Temp.	Time	Yield	dr
			(°C)	(min)	(%)	
1	HC1	Et ₂ O	0	30	50	1:1
2	$SOCl_2$	Et ₂ O	0	30	48	1:1
3	TiCl(O <i>i</i> -Pr) ₃	C_6H_6	r. t.	30	71	3:1
4	TiCl(O <i>i</i> -Pr) ₃	C_6H_6	10	20	62	7:1
5	TiCl(O <i>i</i> -Pr) ₃	C_6H_6	0	20	66	10:1
6	TiCl(O <i>i</i> -Pr) ₃	C_6H_6	-20	120	66	25:1
				<u>.</u>	<u>.</u>	

(13*S*,14*S*,15*S*,16*S*,*E*)-2,2,13,15,16-Pentachloro-1-((triisopropylsilyl)oxy)tetracos-11-en-14-ol (26)

To a solution of epoxide **7a** (130 mg, 0.20 mmol) in toluene (2.0 mL) at -20 °C was added TiCl(O*i*-Pr)₃ (0.26 mL, 0.26 mmol of 1.0 M solution in hexanes) and the reaction mixture was stirred for 2 h. The reaction was warmed to r. t. and saturated aqueous solution of potassium sodium tartrate (3.00 mL) and EtOAc (3.00 mL) were added. The reaction mixture was stirred at r. t. for 16 h and extracted with EtOAc (3x3.00 mL). The combined organics were dried (Na₂SO₄) and concentrated *in vacuo*. Flash column chromatography (2:1, petroleum ether/CH₂Cl₂) gave **26** (91.0 mg, 66%) as a colourless oil.

[α]_D = -15.6 (c = 0.2, CHCl₃); ¹H NMR (400 MHz, C₆D₆) δ 5.79–5.62 (m, 2 H, H-11 + H-12), 4.97 (dd, J = 9.3, 2.1, 1 H, H-13), 4.54 (ddd, J = 9.1, 5.1, 1.6, 1 H, H-16), 4.26 (ddd, J = 9.8, 3.9, 2.1, 1 H, C-14), 4.10 (s, 2 H, C-1), 3.75 (dd, J = 9.8, 1.6, 1 H, C-15), 2.35–2.28 (m, 2 H), 2.24 (d, J = 3.9, 1 H, RO<u>H</u>), 2.00–1.81 (m, 3 H), 1.76–1.67 (m, 2 H), 1.56–1.46 (m, 1 H), 1.32–1.23 (m, 4 H), 1.23–1.12 (m, 20 H), 1.09–1.05 (m, 21 H), 0.91 (t, J=7.0 Hz, 3 H); ¹³C NMR (101 MHz, C₆D₆) δ 138.4 (CH), 124.8 (CH), 94.3 (C), 76.0 (CH), 73.4 (CH₂), 65.9 (CH), 65.1 (CH), 62.4 (CH), 44.4 (CH₂), 36.9 (CH₂), 32.8 (CH₂), 32.6 (CH₂), 30.1 (CH₂), 30.0 (CH₂), 29.9 (CH₂), 29.7 (CH₂), 29.7 (CH₂), 29.7 (CH₂), 29.4 (CH₂), 27.2 (CH₂), 25.7 (CH₂), 23.4 (CH₂), 18.4 (6xCH₃), 14.7 (CH₃), 12.6 (3xCH); IR (CHCl₃) v_{max} 3692, 2929, 2865, 1601, 1464, 1261, 1121, 1070, 973 cm⁻¹; HRMS (ESI⁺) C₃₃H₆₃³⁵Cl₅O₂SiNa⁺ [M+H]⁺ *m/z* calcd. 717.2932, found 717.3010.

(13R,14S,15S,16S,E)-2,2,13,15,16-pentachloro-1-((triisopropylsilyl)oxy)tetracos-11-en-14-ol (32)

To a solution of epoxide **9b** (66.0 mg, 0.10 mmol) in toluene (1.00 mL) at -20 °C was added TiCl(O*i*-Pr)₃ (0.13 mL, 0.13 mmol of 1.0 M solution in hexanes) and the reaction mixture was stirred for 2 h. The reaction mixture was warmed to r. t. and saturated aqueous solution of potassium sodium tartrate (2.00 mL) and EtOAc (1.50 mL) were added. The reaction mixture was stirred at r. t. for 16 h and extracted with EtOAc (3x3.00 mL). The combined organics were dried (Na₂SO₄) and concentrated *in vacuo*. Flash column chromatography (2:1, petroleum ether/CH₂Cl₂) gave **32** (50.0 mg, 71%) as a colourless oil.

[α]_D = 13.2 (c = 0.5, CHCl₃); ¹H NMR (400 MHz, CD₃OD) δ 5.91–5.76 (m, 2 H, H-11 + H-12), 4.96 (dd, J = 8.1, 1.5, 1 H, H-13), 4.60 (ddd, J = 8.8, 5.4, 1.3, 1 H, H-16), 4.17 (dd, J = 9.4, 1.5, 1 H, H-14), 4.09 (s, 2 H, H-1), 3.88 (dd, J = 9.4, 1.3, 1 H, H-15), 2.30–2.24 (m, 2 H), 2.14–2.09 (m, 2 H), 2.03–1.92 (m, 1 H), 1.90–1.79 (m, 1 H), 1.68–1.59 (m, 3 H), 1.50–1.40 (m, 6 H), 1.40–1.29 (m, 17 H), 1.25–1.11 (m, 24 H), 0.93 (t, J = 7.0, 3 H, H-24); ¹³C NMR (101 MHz, CD₃OD) δ 136.2 (CH), 129.6 (CH), 94.7 (C), 76.0 (CH), 73.7 (CH₂), 66.4 (CH), 65.9 (CH), 62.8 (CH), 44.9 (CH₂), 37.7 (CH₂), 33.3 (CH₂), 33.1 (CH₂), 30.7 (CH₂), 30.5 (CH₂), 30.5 (CH₂), 30.2 (CH₂), 30.1 (CH₂), 27.8 (CH₂), 26.1 (CH₂), 23.9 (CH₂), 18.6 (6xCH₃), 14.6 (CH₃), 13.4 (3xCH); IR (CHCl₃) v_{max} 3695, 2929, 2858, 1601, 1464, 1261, 1099, 1014, 882 cm⁻¹; HRMS (ESI⁺) C₃₃H₆₃³⁵Cl₅NaO₂Si⁺ [M+Na]⁺ *m/z* calcd. 717.2932, found 717.2935.

II.F Synthesis completion

(11*R*,12*S*,13*R*,14*S*,15*S*,16*S*)-11,12-Epoxy-2,2,13,15,16-pentachloro-1-((triisopropylsilyl)oxy)tetracosan-14-ol (28)

To a solution of olefin **26** (35.0 mg, 0.05 mmol) in CH_2Cl_2 (0.10 mL) at 0 °C was added *m*CPBA (17.0 mg, 0.10 mmol) and the reaction mixture was stirred at r. t. for 24 h. A saturated aqueous solution of Na₂S₂O₄ (0.30 mL) and saturated aqueous solution of NaHCO₃ (0.50 mL) were then added and the reaction mixture stirred at r. t. for 1 h. The reaction mixture was extracted wit CH_2Cl_2 (3x1.50 mL). The combined organics were dried (MgSO₄) and concentrated *in vacuo*. Flash column chromatography (1:1, petroleum ether/CH₂Cl₂) gave **28** (13 mg, 36%) and **29** (13 mg, 36%) as colourless oils.

 $[\alpha]_D = 57.7 \ (c = 0.1, CHCl_3);$ ¹H NMR (400 MHz, C₆D₆) δ 4.51 (ddd, J = 8.7, 5.7, 1.6, 1 H, H-16), 4.21 (ddd, J = 9.7, 4.7, 2.3, 1 H, H-14), 4.15 (dd, J = 8.2, 2.3, 1 H, H-13), 4.10 (s, 2 H, H-1), 3.93 (dd, J = 9.7, 1.6, 1 H, H-15), 3.08 (dd, J = 8.2, 1.9, 1 H, H-12), 2.99 (td, J = 5.6, 1.9, 1 H, H-11), 2.35 (d, J = 4.7, 1 H, RO<u>H</u>), 2.34–2.28 (m, 2 H), 1.99–1.89 (m, 1 H), 1.76–1.68 (m, 2 H), 1.66–1.56 (m, 1 H), 1.37–1.35 (m, 2 H), 1.32–1.11 (m, 22 H), 1.09–1.01 (m, 21 H), 0.93 (t, J = 6.9 Hz, 3 H, H-24); ¹³C NMR (101 MHz, C₆D₆) δ 94.3 (C), 75.7 (CH), 73.4 (CH₂), 65.7 (CH), 64.3 (CH), 62.1 (CH), 59.8 (CH), 57.4 (CH), 44.4 (CH₂), 36.9 (CH₂), 32.6

(CH₂), 32.4 (CH₂), 30.8 (CH₂), 30.6 (CH₂), 30.1 (CH₂), 30.0 (CH₂), 30.0 (CH₂), 29.9 (CH₂), 29.7 (CH₂), 27.2 (CH₂), 26.5 (CH₂), 25.7 (CH₂), 23.4 (CH₂), 18.4 (6xCH₃), 14.7 (CH₃), 12.6 (3xCH); IR (CHCl₃) v_{max} 3692, 2961, 2929, 2859, 1601, 1464, 1261, 1097, 1014, 881 cm⁻¹; HRMS (ESI⁺) C₃₃H₆₃³⁵Cl₅O₃SiNa⁺ [M+H]⁺ *m/z* calcd. 733.2881, found 733.2915.

(11*S*,12*R*,13*R*,14*S*,15*S*,16*S*)-11,12-Epoxy-2,2,13,15,16-pentachloro-1-((triisopropylsilyl)oxy)tetracosan-14-ol (29)

[α]_D = 25.2 (c = 0.2, CHCl₃); ¹H NMR (400 MHz, C₆D₆) δ 4.55–4.49 (m, 2 H, H-16 + H-14), 4.28 (dd, J = 9.8, 4.1, 1 H, H-15), 4.08 - 4.12 (m, 3 H, H-1 + H-13), 3.22 (dd, J = 8.8, 2.0, 1 H, H-12), 2.52 (td, J = 5.3, 2.0, 1 H, H-11), 2.34–2.27 (m, 2 H), 2.25 (d, J=5.1 Hz, 1 H, RO<u>H</u>), 1.99–1.88 (m, 1 H), 1.75–1.66 (m, 2 H), 1.58–1.48 (m, 1 H), 1.39–1.34 (m, 2 H), 1.31–1.01 (m, 43 H), 0.91 (t, J=7.1 Hz, 3 H); ¹³C NMR (101 MHz, C₆D₆) δ 94.3 (C), 76.8 (CH), 73.4 (CH₂), 64.4 (CH), 63.3 (CH), 62.8 (CH), 58.6 (CH), 56.0 (CH), 44.4 (CH₂), 36.8 (CH₂), 32.5 (CH₂), 32.1 (CH₂), 30.0 (CH₂), 30.0 (CH₂), 30.0 (CH₂), 29.9 (CH₂), 29.8 (CH₂), 29.7 (CH₂), 29.7 (CH₂), 27.2 (CH₂), 26.5 (CH₂), 25.7 (CH₂), 23.4 (CH₂), 18.4 (6xCH₃), 14.7 (CH₃), 12.6 (3xCH); IR (CHCl₃) v_{max} 3603, 2929, 2865, 1602, 1464, 1261, 1098, 1014, 882 cm⁻¹; HRMS (ESI⁺) C₃₃H₆₃³⁵Cl₅O₃SiNa⁺ [M+H]⁺ m/z calcd. 733.2881, found 733.2911.

(11*S*,12*R*,13*R*,14*R*,15*S*,16*S*)-2,2,11,12,13,15,16-Heptachloro-1-((triisopropylsilyl)oxy)tetracosan-14-ol (30)

To a solution of triphenylphosphine oxide (70 mg, 0.25 mmol) in CHCl₃ (0.50 mL) was added oxalyl chloride (21.0 μ L, 0.25 mmol) and the reaction mixture was stirred at r. t. for 5 min. The resulting solution of chlorotriphenylphosphonium chloride (0.10 mL, 0.05 mmol) was then added to a solution of epoxide **28** (24.0 mg, 0.03 mmol) in toluene (240 μ L) at 90 °C and stirred for 3 h. The reaction mixture was concentrated *in vacuo*. Flash column chromatography (3:1, petroleum ether/CH₂Cl₂) gave **30** (7.00 mg, 27%) as a colourless oil.

[α]_D = -9.9 (c = 0.7, CHCl₃); ¹H NMR (400 MHz, C₆D₆) δ 4.71 (dd, J = 6.0, 4.1, 1 H, H-12), 4.64 (dd, J = 6.0, 3.6, 1 H, H-13), 4.48 (ddd, J = 8.4, 6.7, 3.6, 1 H, H-14), 4.38 (ddd, J = 9.0, 5.0, 1.8, 1 H, H-16), 4.35–4.31 (m, 1 H, H-11), 4.18 (dd, J = 8.4, 1.8, 1 H, H-15), 4.10 (s, 2 H, H-1), 2.35–2.28 (m, 2 H), 2.17 (d, J=6.7 Hz, 1 H), 1.91–1.76 (m, 3 H), 1.74–1.67 (m, 2 H), 1.58–1.47 (m, 2 H), 1.37–1.05 (m, 42 H), 0.93 (t, J = 6.9 Hz, 3 H, H-24); ¹³C NMR (101 MHz, C₆D₆) δ 94.3 (C), 74.1 (CH), 73.3 (CH₂), 67.2 (CH), 66.9 (CH), 64.9 (CH), 64.3 (CH), 62.7 (CH), 44.4 (CH₂), 36.8 (CH₂), 36.0 (CH₂), 32.5 (CH₂), 30.8 (CH₂), 30.1 (CH₂), 29.9 (CH₂), 29.8 (CH₂), 29.7 (CH₂), 29.7 (CH₂), 29.4 (CH₂), 27.1 (CH₂), 26.7 (CH₂), 25.7 (CH₂), 23.4 (CH₂), 18.4 (6xCH₃), 14.7 (CH₃), 12.6 (3xCH); IR (CHCl₃) v_{max} 3598, 3011, 2929, 2859, 1464, 1379, 1124, 882 cm⁻¹; HRMS (ESΓ) C₃₄H₆₄³⁵Cl₇O₄Si⁻ [M+COOH]⁻ m/z calcd. 809.2399, found 809.2424.

(11*R*,12*S*,13*R*,14*R*,15*S*,16*S*)-2,2,11,12,13,15,16-Heptachloro-1-((triisopropylsilyl)oxy)tetracosan-14-ol (31)

To a solution of triphenylphosphine oxide (70 mg, 0.25 mmol) in CHCl₃ (0.50 mL) was added oxalyl chloride (21.0 μ L, 0.25 mmol) and the reaction mixture was stirred at r. t. for 5 min. The resulting solution of chlorotriphenylphosphonium chloride (0.10 mL, 0.05 mmol) was then added to a solution of epoxide **29** (25.0 mg, 0.04 mmol) in toluene (240 μ L) at 90 °C and stirred for 3 h. The reaction mixture was concentrated *in vacuo*. Flash column chromatography (3:1, petroleum ether/CH₂Cl₂) gave **31** (9.00 mg, 35%) as a colourless oil.

[α]_D = 37.7 (c = 0.9, CHCl₃); ¹H NMR (400 MHz, C₆D₆) δ 4.93 (d, J = 10.5, 1 H, H-13), 4.69 (dd, J = 9.4, 6.9, 1 H, H-14), 4.65 (dd, J = 10.5, 1.4, 1 H, H-12), 4.62–4.57 (m, 2 H, H-15 + H-16), 4.42 (ddd, J = 8.9, 5.2, 1.4, 1 H, H-11), 4.10 (s, 2 H), 2.36–2.29 (m, 2 H), 1.98–1.90 (m, 2 H), 1.87 (d, J = 6.9, 1 H), 1.76–1.67 (m, 2 H), 1.60–1.47 (m, 3 H), 1.37–1.01 (m, 42 H), 0.92 (t, J = 7.1 Hz, 3 H, H-24); ¹³C NMR (101 MHz, C₆D₆) δ 94.3 (C), 75.3 (CH), 73.4 (CH₂), 66.6 (CH), 65.1 (CH), 64.6 (CH), 64.0 (CH), 63.0 (CH), 44.4 (CH₂), 36.9 (CH₂), 36.7 (CH₂), 32.5 (CH₂), 30.8 (CH₂), 30.1 (CH₂), 29.9 (CH₂), 29.9 (CH₂), 29.7 (CH₂), 29.7 (CH₂), 29.7 (CH₂), 29.6 (CH₂), 27.2 (CH₂), 27.1 (CH₂), 25.7 (CH₂), 23.4 (CH₂), 18.4 (6xCH₃), 14.7 (CH₃), 12.6 (3xCH); IR (CHCl₃) v_{max} 3602, 2929, 2865, 1602, 1464, 1382, 1261, 1123, 1014, 882 cm⁻¹; HRMS (ESΓ) C₃₄H₆₄³⁵Cl₇O₄Si⁻ [M+COOH]⁻ *m/z* calcd. 809.2399, found 809.2428.

(11*S*,12*R*,13*S*,14*S*,15*S*,16*S*)-11,12-Epoxy-2,2,13,15,16-pentachloro-1-((triisopropylsilyl)oxy)tetracosan-14-ol (6a)

To a solution of olefin **32** (82.0 mg, 0.12 mmol) in CH_2Cl_2 (0.60 mL) at 0 °C was added *m*CPBA (40.0 mg, 0.24 mmol) and the reaction mixture was stirred at r. t. for 24 h. A saturated aqueous solution of Na₂S₂O₄ (0.50 mL) and a saturated aqueous solution of NaHCO₃ (0.50 mL) were then added and the reaction mixture was stirred at r. t. for 1 h. The reaction mixture was extracted with CH_2Cl_2 (3x2.00 mL) and the combined organics were dried (MgSO₄) and concentrated *in vacuo*. Flash column chromatography (17:3, petroleum ether/Et₂O) gave **6a** (37.0 mg, 45%) and **6b** (24.0 mg, 29%) as colourless oils.

[α]_D = 62.3 (c = 0.2, CHCl₃); ¹H NMR (400 MHz, C₆D₆) δ 4.45 (ddd, J = 9.2, 4.4, 1.6, 1 H, H-16), 4.43–4.38 (m, 1 H, H-14), 4.26 (dd, J = 7.0, 1.3, 1 H, H-13), 4.17 (dd, J = 9.4, 1.6, 1 H, H-15), 4.10 (s, 2 H, H-1), 3.05 (dd, J = 7.0, 2.0, 1 H, H-12), 2.61 (td, J = 5.0, 2.0, 1 H, H-11), 2.36–2.30 (m, 3 H), 2.01–1.91 (m, 1 H), 1.78–1.69 (m, 3 H), 1.52–1.46 (m, 1 H), 1.39–1.35 (m, 3 H), 1.33–1.12 (m, 20 H), 1.10–1.01 (m, 21 H), 0.93 (t, J=7.0 Hz, 3 H, H-24); ¹³C NMR (101 MHz, C₆D₆) δ 94.3 (C), 73.4 (CH₂), 72.7 (CH), 65.1 (CH), 63.2 (CH), 62.2 (CH), 60.0 (CH), 58.8 (CH), 44.4 (CH₂), 37.0 (CH₂), 32.6 (CH₂), 32.1 (CH₂), 30.8 (CH₂), 30.1 (CH₂), 30.0 (CH₂), 30.0 (CH₂), 29.9 (CH₂), 29.7 (CH₂), 27.3 (CH₂), 26.4 (CH₂), 25.7 (CH₂), 23.4 (CH₂), 18.4 (6xCH₃), 14.7 (CH₃), 12.6 (3xCH); IR (CHCl₃) v_{max} 3689, 2929, 2860, 1602, 1464, 1261, 1239, 1099, 1013, 882 cm⁻¹; HRMS (ESI⁺) C₃₃H₆₃³⁵Cl₅NaO₃Si⁺ [M+Na]⁺ *m/z* calcd. 733.2881, found 733.2885.

(11*R*,12*S*,13*S*,14*S*,15*S*,16*S*)-11,12-Epoxy-2,2,13,15,16-pentachloro-1-((triisopropylsilyl)oxy)tetracosan-14-ol (6b)

[α]_D = 101 (c = 0.1, CHCl₃); ¹H NMR (400 MHz, C₆D₆) δ 4.48 (ddd, J = 9.3, 3.9, 1.4, 1 H, H-16), 4.41 (dd, J = 6.2, 1.1, 1 H, H-13), 4.30 (dd, J = 9.5, 8.4, 1 H, H-14), 4.10 (s, 2 H), 3.99 (dd, J = 9.5, 1.4, 1 H, H-15), 2.84 (dd, J = 6.2, 1.9, 1 H, H-12), 2.73 (td, J = 4.9, 1.9 Hz, 1 H, H-11), 2.36–2.31 (m, 2 H), 2.27 (d, J = 8.4, 1 H, RO<u>H</u>) 2.02–1.91 (m, 1 H), 1.79–1.69 (m, 3 H), 1.55–1.42 (m, 4 H), 1.26–0.97 (m, 41 H), 0.93 (t, J = 7.0, 3 H, H-24); ¹³C NMR (101 MHz, C₆D₆) δ 94.3 (C), 74.4 (CH), 73.3 (CH₂), 65.3 (CH), 64.4 (CH), 62.1 (CH), 60.0 (CH), 58.4 (CH), 44.4 (CH₂), 37.1 (CH₂), 32.6 (CH₂), 31.9 (CH₂), 30.8 (CH₂), 30.6 (CH₂), 30.1 (CH₂), 30.0 (CH₂), 30.0 (CH₂), 29.9 (CH₂), 29.7 (CH₂), 27.3 (CH₂), 26.4 (CH₂), 25.7 (CH₂), 23.4 (CH₂), 18.4 (6xCH₃), 14.7 (CH₃), 12.6 (3xCH); IR (CHCl₃) v_{max} 3689, 2928, 2858, 1601, 1521, 1423, 1260, 1100, 1015, 820 cm⁻¹; HRMS (ESI⁺) C₃₃H₆₃³⁵Cl₅NaO₃Si⁺ [M+Na]⁺ m/zcalcd. 733.2881, found 733.2875.

(11*S*,12*R*,13*S*,14*R*,15*S*,16*S*)-2,2,11,12,13,15,16-Heptachloro-1-((triisopropylsilyl)oxy)tetracosan-14-ol (33)

To a solution of triphenylphosphine oxide (70 mg, 0.25 mmol) in CHCl₃ (0.50 mL) was added oxalyl chloride (21.0 μ L, 0.25 mmol) and the reaction mixture was stirred at r. t. for 5 min. The resulting solution of chlorotriphenylphosphonium chloride (0.04 mL, 0.02 mmol) was then added to a solution of epoxide **6b** (9.50 mg, 0.01 mmol) in toluene (90.0 μ L) at 90 °C and stirred for 3 h. The reaction mixture was concentrated *in vacuo*. Flash column chromatography (3:1, petroleum ether/CH₂Cl₂) gave **33**(6.50 mg, 64%) as a colourless oil.

[α]_D = 89.0 (c = 0.1, CHCl₃); ¹H NMR (400 MHz, C₆D₆) δ 5.19 (dd, J = 10.3, 1.1, 1 H, H-13), 4.89 (ddd, J = 9.5, 8.9, 1.1, 1 H, H-14), 4.57 (ddd, J = 8.8, 4.6, 1.6, 1 H, H-16), 4.31 (ddd, J = 8.7, 4.9, 1.4, 1 H, H-11), 4.25 (dd, J = 10.3, 1.4 Hz, 1 H, H-12), 4.14 (dd, J = 9.5, 1.6 Hz, 1 H, H-15), 4.11 (s, 2 H, H-1), 2.37–2.31 (m, 2 H), 2.00–1.91 (m, 2 H), 1.79 (d, J = 8.9, 1 H, RO<u>H</u>), 1.77–1.70 (m, 3 H), 1.56–1.45 (m, 4 H), 1.27–1.057 (m, 40 H), 0.93 (t, J = 7.0, 3 H, H-24); ¹³C NMR (101 MHz, C₆D₆) δ 94.3 (C), 73.4 (CH₂), 72.2 (CH), 65.4 (CH), 65.1 (CH), 64.9 (CH), 63.2 (CH), 62.5 (CH), 44.4 (CH₂), 37.2 (CH₂), 36.9 (CH₂), 32.6 (CH₂), 30.8 (CH₂), 30.6 (CH₂), 30.1 (CH₂), 30.0 (CH₂), 29.9 (CH₂), 29.7 (CH₂), 29.6 (CH₂), 27.3 (CH₂), 27.1 (CH₂), 25.7 (CH₂), 23.4 (CH₂), 18.4 (6xCH₃), 14.7 (CH₃), 12.6 (3xCH); IR (CHCl₃) v_{max} 3691, 2928, 2858, 1602, 1464, 1377, 1264, 1126, 1014, 882 cm⁻¹; HRMS (ESΓ) C₃₄H₆₄³⁵Cl₇O₄Si⁻ [M+COOH]⁻ m/z calcd. 809.2399, found 809.2422.

(11*R*,12*S*,13*S*,14*R*,15*S*,16*S*)-2,2,11,12,13,15,16-Heptachloro-1-((triisopropylsilyl)oxy)tetracosan-14-ol (34)

To a solution of triphenylphosphine oxide (70 mg, 0.25 mmol) in CHCl₃ (0.50 mL) was added oxalyl chloride (21.0 μ L, 0.25 mmol) and the reaction mixture was stirred at r. t. for 5 min. The resulting solution of chlorotriphenylphosphonium chloride (0.12 mL, 0.06 mmol) was then added to a solution of epoxide **6a** (37.0 mg, 0.05 mmol) in toluene (0.40 mL) at 90 °C and stirred for 3 h. The reaction mixture was concentrated *in vacuo*. Flash column chromatography (3:1, petroleum ether/CH₂Cl₂) gave **34** (24.0 mg, 60%) as a colourless oil.

[α]_D = 14.8 (c = 0.1, CHCl₃); ¹H NMR (400 MHz, C₆D₆) δ 5.14 (dd, J = 8.6, 0.9, 1 H, H-13), 4.53 (ddd, J = 10.9, 9.3, 0.9, 1 H, H-14), 4.31 (ddd, J = 9.7, 4.0, 1.4, 1 H, H-16), 4.20 (dd, J = 8.6, 2.1, 1 H, H-12), 4.12–4.07 (m, 3 H, H-1 + H-11), 3.96 (dd, J = 9.3, 1.4 Hz, 1 H, H-15), 2.36–2.29 (m, 2 H), 2.00–1.90 (m, 1 H), 1.87–1.76 (m, 1 H), 1.76–1.62 (m, 4 H), 1.52–1.45 (m, 2 H), 1.32–1.30 (m, 1 H), 1.27–1.01 (m, 41 H), 0.93 (t, J=7.0 Hz, 3 H, H-24); ¹³C NMR (101 MHz, C₆D₆) δ 94.3 (C), 73.4 (CH₂), 72.4 (CH), 68.5 (CH), 68.4 (CH), 65.4 (CH), 62.1 (CH), 62.0 (CH), 44.4 (CH₂), 37.2 (CH₂), 36.9 (CH₂), 32.6 (CH₂), 30.1 (CH₂), 30.0 (CH₂), 29.9 (CH₂), 29.8 (CH₂), 29.7 (CH₂), 29.6 (CH₂), 27.3 (CH₂), 26.8 (CH₂), 25.7 (CH₂), 23.4 (CH₂), 18.4 (6xCH₃), 14.7 (CH₃), 12.6 (3xCH); IR (CHCl₃) v_{max} 3691, 2929, 2858, 1602, 1464, 1261, 1094, 1014, 882 cm⁻¹; HRMS (ESI⁻) C₃₄H₆₄³⁵Cl₇O₄Si⁻ [M+COOH]⁻ m/z calcd. 809.2399, found 809.2417.

(11*R*,12*S*,13*S*,14*R*,15*S*,16*S*)-2,2,11,12,13,15,16-heptachlorotetracosane-1,14-diol (35)

To a solution of silyl ether **34** (24.0 mg, 0.03 mmol) in THF (0.15 mL) was added acetic acid (2 drops from a 1 mL syringe) and tetrabutylammonium fluoride trihydrate (39.0 mg, 0.12 mmol). The reaction was stirred at r. t. for 4 h after which time further tetrabutylammonium fluoride trihydrate (39.0 mg, 0.12 mmol) was added and the reaction mixture was stirred at r. t. for 20 h. The reaction was quenched with NH₄Cl (0.50 mL of 1.0 M aqueous solution) and the reaction mixture was extracted with EtOAc (3x1.00 mL). The combined organics were dried (Na₂SO₄) and concentrated in vacuo. Flash column chromatography (3:1, petroleum ether/EtOAc) gave **36** (19 mg, quantitative) as a yellow oil.

[α]_D = 53.2 (c = 0.3, CHCl₃); ¹H NMR (400 MHz, C₆D₆) δ 5.15 (dd, J = 8.6, 1.0, 1 H, H-13), 4.55 (dd, J = 9.3, 1.0, 1 H, H-14), 4.32 (ddd, J = 9.3, 4.1, 1.4, 1 H, H-16), 4.22 (dd, J = 8.6, 2.2, 1 H, H-12), 4.12 (ddd, J = 8.0, 5.6, 2.2, 1 H, H-11), 3.98 (dd, J = 9.3, 1.4, 1 H, H-15), 3.59 (s, 2 H, H-1), 2.11–2.03 (m, 2 H), 2.02–1.91 (m, 1 H), 1.88–1.64 (m, 4 H), 1.62–1.55 (m, 2 H), 1.51–1.44 (m, 2 H), 1.37–0.99 (m, 19 H), 0.93 (t, J = 7.0 Hz, 3 H, H-24); ¹³C NMR (101 MHz, C₆D₆) δ 95.4 (C), 72.5 (CH₂), 72.4 (CH), 68.5 (CH), 68.4 (CH), 65.5 (CH), 62.1 (CH), 61.9 (CH), 44.1 (CH₂), 37.2 (CH₂), 36.9 (CH₂), 32.6 (CH₂), 30.6 (CH₂), 30.1 (CH₂), 30.0 (CH₂), 29.8 (CH₂), 29.7 (CH₂), 29.5 (CH₂), 29.5 (CH₂), 27.3 (CH₂), 26.7 (CH₂), 25.5 (CH₂), 23.4 (CH₂), 14.7 (CH₃); IR (CHCl₃) v_{max} 3587, 3545, 2929, 2857, 1465, 1377, 1272, 1091, 851 cm⁻¹; HRMS (ESI⁺) C₂₄H₄₃³⁵Cl₇NaO₂⁺ [M+Na]⁺ *m*/*z* calcd. 631.0975, found 631.0997.

(11*R*,12*S*,13*S*,14*R*,15*S*,16*S*)-2,2,11,12,13,15,16-heptachlorotetracosane-1,14-diyl bis(hydrogen sulfate) (36)⁴

To a solution of diol **35** (10.0 mg, 0.02 mmol) in DMF (0.80 mL) was added SO₃-pyridine (13.0 mg, 0.08 mmol) and the reaction mixture was stirred at r. t. for 1 h and was immediately filtered through a short plug of silica (9:1, CH₂Cl₂/MeOH). The filtrate was concentrated in vacuo. Flash column chromatography (5:1 CH₂Cl₂/MeOH) gave **36** (8.40 mg, 68%) as an off-white solid.

[α]_D = 49.9 (c = 0.3, CH₃OH) [lit.^{4,5} [α]_D = 6.4 (c = 0.5, CH₃OH)]; ¹H NMR (400 MHz, CD₃OD, 330 K) δ 5.04 (dd, J = 9.1, 0.9, 1 H, H-14), 4.96 (ddd, J = 8.6, 4.5, 1.8, 1 H, H-11), 4.84 (dd, J = 9.9, 0.9, 1 H, H-13), 4.79 (ddd, J = 8.7, 5.5, 1.1, 1 H, H-16), 4.66 (dd, J = 9.9, 1.8, 1 H, H-12), 4.31 (s, 2 H, H-1), 4.27 (dd, J = 9.1, 1.1, 1 H, H-15), 2.29–2.23 (m, 2 H), 2.00–1.76 (m, 5 H), 1.69–1.62 (m, 2 H), 1.60–1.50 (m, 2 H), 1.48–1.26 (m, 19 H), 0.89 (t, J = 7.0 Hz, 3 H, H-24); ¹³C NMR (126 MHz, CD₃OD) δ 91.5 (C), 77.6 (CH₂), 75.7 (CH), 69.2 (CH), 67.7 (CH), 66.2 (CH), 63.3 (CH), 62.2 (CH), 45.3 (CH₂), 38.6 (CH₂), 37.9 (CH₂), 33.2 (CH₂), 30.7 (CH₂), 30.6 (CH₂), 30.6 (CH₂), 30.5 (CH₂), 30.3 (CH₂), 30.3 (CH₂), 30.2 (CH₂), 27.8 (CH₂), 27.4 (CH₂), 26.0 (CH₂), 23.9 (CH₂), 14.6 (CH₃); IR (CHCl₃) v_{max} 3633, 3008, 2929, 2857, 1710, 1457, 1363, 1261, 1112, 1033, 862 cm⁻¹; HRMS (ESΓ) C₂₄H₄₁³⁵Cl₇O₈S₂²⁻¹ [M–2H]²⁻ m/z calcd. 383.0037, found 383.0042.

⁵ The literature compound was isolated as the bis sodium salt.

III. NMR Spectra

S44

S55

S77

IV. X-Ray Crystallography Data

(2S,3S,4S,5S)-Ethyl 4,5-dichloro-2,3-dihydroxytridecanoate (15) CCDC 1470484

CI 1

C12 C12 C11 C10 C19 C19 C10 C19	
Empirical formula	$C_{15}H_{28}O_4Cl_2$
Formula weight	343.27
Crystal description	colourless block
Crystal size	0.7583 x 0.0861x 0.0217 r
Crystal system	Orthorhombic
Space group	P 21 21 21
Unit cell dimensions	a = 5.5540(6) A alpha = 9
	b = 8.7336(10) A beta = 9

Volume Reflections for cell refinement Z Density (calculated) Absorption coefficient F(000) Wavelength Theta range for data collection Index ranges

Independent reflections Data / restraints / parameters Final R indices [I>2sigma(I)] Final R indices (all data) Goodness-of-fit on F^2

nm 90 deg. 90 deg. c = 36.980(5) A gamma = 90 deg. 1793.8(4) A³ 4779 4 1.271 Mg/m^3 3.359 mm^-1 736.0 1.5418 A 9.566 to 152.776 deg. -6<=h<=6, -10<=k<=9, -45<=l<=46 3611 [R(int) = 0.1037]3611/168/194 (least-squares on F^2) R1 = 0.1349, wR2 = 0.3369R1 = 0.1504, wR2 = 0.34521.084

Absolute structure parameter	0.10(4)
Final maximum delta/sigma	0.000
Largest diff. peak and hole	1.45 and -0.75 e.A^-3

(4R,5S,6S,7S,E)-Ethyl-4,6,7-trichloro-5-hydroxypentadec-2-enoate (20) CCDC 1470483

C15 C14 C13 C12 C11 C10 C9 C8	$\begin{array}{c} 3 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$
Empirical formula	$C_{17}H_{29}Cl_3O_3$
Formula weight	387.75
Crystal description	colourless block
Crystal size	0.4221 x 0.0789 x 0.0506 mm
Crystal system	Orthorhombic
Space group	P 21 21 21
Unit cell dimensions	a = 5.1865(3) A alpha = 90 deg.
	b = 9.3623(5) A beta = 90 deg.
	c = 40.6608(18) A gamma = 90 deg.
Volume	1974.38(17) A^3
Reflections for cell refinement	4779
Z	4
Density (calculated)	1.304 Mg/m^3
Absorption coefficient	4.291 mm^-1
F(000)	824
Wavelength	1.5418 A
Theta range for data collection	4.35 to 74.54 deg.
Index ranges	-4<=h<=6, -10<=k<=11,
	49<=1<=47
Independent reflections	3919 [R(int) = 0.0480]
Observed reflections	3563 [II>2\s(I)]
Absorption correction	Gaussian ($Tmin = 0.3$, $Tmax = 1.096$)

0%

Decay correction

Structure solution by	direct and difmap methods
Hydrogen atom location	geom
Hydrogen atom treatment	constr
Data / restraints / parameters	3919/0/212 (least-squares on F^2)
Final R indices [I>2sigma(I)]	R1 = 0.0638, wR2 = 0.1382
Final R indices (all data)	R1 = 0.0726, wR2 = 0.1414
Goodness-of-fit on F^2	1.218
Absolute structure parameter	0.02(3)
Final maximum delta/sigma	0.000
Largest diff. peak and hole	0.530 and -0.512 e.A^-3

V. Computational Data

All quantum chemical calculations were performed with Gaussian 09 rev. D.01.¹ Geometry optimizations were carried out with a universal solvation model (SMD) of toluene and confirmed as minima or transition structures by frequency analysis.² Various density functional methods were tested including hybrids with an admixture of exact exchange, employing the generalized gradient approximation (GGAs, B3LYP and wB97XD) and meta GGA (M06-2X, M11, M11-L).³ The inclusion of density-independent atom-pairwise dispersion correction was tested with B3LYP-D3 calculations, employing a Becke-Johnson damping function at short range.⁴ These results were compared with a pertubative double-hybrid functional, B2-PLYP-D3 and explicitly correlated wavefunction theory in the form of MP2 optimizations.⁵ Double, triple and quadruple zeta-valence polarized basis sets were considered in the form of Pople 6-31+G(d) and Karlsruhe def2-TZVPP and def2-QZVPP basis sets, respectively. All electronic energies in the main text are reports in kcal/mol, with distances in Å. Absolute energies in Hartree are provided in the SI. The NCI analysis was performed using nciplot to analyze the M06-2X/def2-TZVPP densities.⁶

Table S3. Results from optimizations of **39** and **40** with a double-zeta basis set: C-Cl distances and energy relative to a separated allyl cation and alkylchloride.

Entry	Level of theory	Basis set	r (C-Cl) 39	r (C-allyl) 40	r (C-alkyl) 40	$\Delta E_{o} kcal/mol$
1	B3YLP	6-31+G(d)	1.92	2.11	1.89	8.7
2	B3LYP-D3	6-31+G(d)	1.91	2.06	1.89	12.1
3	wB97XD	6-31+G(d)	1.87	1.93	1.87	11.8
4	MO6-2X	6-31+G(d)	1.87	1.92	1.87	13.5
5	M11	6-31+G(d)	1.87	1.91	1.87	14.4
6	M11-L	6-31+G(d)	1.87	2.57	1.82	8.5

Figure S1. Computed structures and NCI (non-covalent interaction) isosurfaces for the interconversion of the epimeric chloretanium intermediates. A weakly attractive nonbonding interaction remains along the reaction coordinate between the chlorine and C13.

SMD-M06-2X/def2-TZVPP Cartesian Coordinates:

Chloretanium 1:

E: -1268.70427359 ZPE: 0.171497 H: -1268.520777 G: -1268.569708

С	0.33941800	-0.06675500	-0.09484800
С	-2.06913500	0.08112100	0.49070700
С	-0.78932900	0.83649900	0.48512300
Н	-0.54433400	1.07957100	1.52691100
0	-0.87070600	1.96685400	-0.33278900
Н	-1.00432900	2.76048500	0.19509400
С	1.72641700	0.32874400	0.40567600
Н	1.82749700	0.00900900	1.44202200
С	2.04659000	1.80429300	0.26767600
Н	3.07901600	1.97059200	0.56804300
Н	1.41050700	2.40186200	0.92139100
Н	1.91978400	2.14323100	-0.75905200
Cl	2.93114600	-0.62154000	-0.52029800
Н	0.27587400	0.02431000	-1.17839300
Cl	0.02530200	-1.79130500	0.29185400
Н	-2.22585300	-0.64872500	1.27620500
С	-3.06588400	0.26690800	-0.45309400
С	-4.16430400	-0.53599500	-0.36125400
Н	-2.94886100	0.99922600	-1.23964400
Н	-4.96845100	-0.48355100	-1.08685100
Н	-4.25746000	-1.26135900	0.44023000

Chlorolanium 1:

E: -1268.69115887 ZPE: 0.169966 H: -1268.508376 G: -1268.560149

С	0.96192700	0.77798100	0.57109800
Н	1.55718800	1.44571200	1.19326100
С	-0.44074800	0.63206800	1.16989100
Н	-0.29489900	0.35573300	2.21698300
С	1.61991400	-0.58078600	0.57741300
С	-1.21134100	-0.53678400	0.49353200
Cl	0.21047600	-1.71142600	0.01728000

H H	1.77343300 -1.76088500	-0.90342200 -1.12152600	1.60586000 1.22599400
	-2.02087300	-0.25782400	-0.76696900
H H	2.60018800	-0.65309000	-1.34291100
H Cl	3.59752800	-0.15494900	0.03122000
0 H	-1.19933600 -1.27670500	1.78618500 2.13946400	1.17116300
H H H	-3.90414900 -3.74452700 -1.56541200	-0.41662400 -1.21226800 0.29722700	-1.62240800 0.04050300 -1.51874300
0 H H H H	-1.19933600 -1.27670500 -3.90414900 -3.74452700 -1.56541200	1.78618500 2.13946400 -0.41662400 -1.21226800 0.29722700	1.17116300 0.27538800 -1.62240800 0.04050300 -1.51874300

Chloretanium 2:

Ε:	-1268.70576014	ZPE:	0.17068	H: -1268.522	805 G:	-1268.572542
С		0.42	2953500	0.00151600	-0.2	7845500
Ċ		-2.02	2794900	0.18312300	-0.2	8297300
С		-0.7	5888000	0.86408400	0.1	3997900
Н		-0.7	5069500	1.03019500	1.2	2019000
0		-0.70	6398200	2.06560700	-0.5	9447200
Н		-1.10	0838900	2.78969500	-0.0	5978800
С		1.7	1690800	0.31232800	0.4	6603700
Н		1.59	9804800	0.04534600	1.5	1552700
С		2.14	4115500	1.76102200	0.3	1999000
Н		3.10	0590100	1.90388300	0.8	0231700
Н		1.42	2056900	2.42336400	0.7	9981100
Н		2.22	2895100	2.03988100	-0.7	2938300
Cl		3.00	0638700	-0.75512200	-0.1	6888100
Н		0.5	7203200	0.08467600	-1.3	5597700
Н		-2.09	9111700	-0.07372400	-1.3	3814400
Cl		-0.1	1126200	-1.68745200	0.0	4360900
С		-3.14	4654900	0.01708900	0.5	2286900
С		-4.2	7142400	-0.49151100	-0.0	4842000
Н		-4.29	9001600	-0.75356000	-1.1	0047400
Н		-5.1	7687100	-0.65458200	0.5	2453200
Н		-3.1	1047300	0.27781200	1.5	7263800

Chlorolanium 2:

E: -1268.69060334	ZPE: 0.1702	5 H: -1268.50754	9 G: -1268.558791
С	0.45034200	0.79121000	-0.85162100
C	-1.39314900	-0.81435000	-0.71303800
С	1.19033400	-0.09018700	0.16581400
Cl	0.04409400	-1.61809600	0.23042100
Н	-1.21691400	-1.16693200	-1.72730400
С	-2.68176700	-1.31854900	-0.14061000
Н	-2.77073100	-1.10400000	0.92096800
Н	-2.79322200	-2.38658200	-0.31553900
Н	-3.48843300	-0.80212000	-0.66627900
Н	1.10568200	0.30952800	1.17245900
С	2.55195100	-0.51386000	-0.19884700
С	3.56607500	-0.34117400	0.63923800
0	0.85175500	2.11034400	-0.68882800
Н	1.71379200	2.25024900	-1.09622400
Н	4.57884800	-0.58822500	0.34924200
Н	3.41810000	0.06395600	1.63333200
Н	2.69586600	-0.91955600	-1.19424600
С	-1.05072400	0.65650900	-0.61740900
Н	-1.60327700	1.18644400	-1.39328500
Cl	-1.50937000	1.36160200	0.94530900
Н	0.65757600	0.41729100	-1.86108100

TS Chloretanium 1 to 2: $(v = 126.95i \text{ cm}^{-1})$

E: -1268.68556086 ZPE: 0.169754 H: -1268.503863 G: -1268.55300

С	0.43528300	-0.14117400	-0.22611400
С	-2.09768600	-0.15028200	-0.16649000
С	-0.84623700	0.59043900	0.20527300

Н	-0.84909900	0.66851800	1.30339700
0	-1.00368400	1.83907700	-0.41822800
Н	-0.63575400	2.54269700	0.12545100
C	1.71074300	0.40883200	0.40994600
Н	1.73180000	0.11861300	1.45936100
C	1.89664700	1.90954000	0.28067400
Н	2.90199300	2.17339000	0.60205000
Н	1.20935000	2.43718600	0.94597200
Н	1.76090800	2.24948600	-0.74523400
Cl	3.10371800	-0.42536200	-0.34899900
Н	0.51537300	-0.12586700	-1.31298600
Н	-2.03633700	-1.05591100	-0.76242000
Cl	0.23031000	-1.84796800	0.28002700
C	-3.34889900	0.32224600	0.18598500
С	-4.42582600	-0.41510300	-0.20925400
Н	-4.29243000	-1.31675500	-0.79719200
Н	-5.43875900	-0.13280500	0.05317100
Н	-3.46021300	1.22845700	0.76664300

Computational References:

¹ Gaussian 09, Revision **D.01**, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

² A. V. Marenich, C. J. Cramer, and D. G. Truhlar, *J. Phys. Chem. B* **2009**, *13*, 6378.

³ (a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648; (b) J.-D. Chai and M. Head-Gordon, Phys. Chem. Chem.

Phys. 2008, 10, 6615; (c) Y. Zhao, N. E. Schultz, and D. G. Truhlar, J. Chem. Theory and Comput. 2006, 2,

364.; (d) R. Peverati and D. G. Truhlar, J. Phys. Chem. Lett. 2012, 3, 117.

⁴ (a) S. Grimme, S. Ehrlich and L. Goerigk, *J. Comp. Chem.* **2011**, *32*, 1456.

⁵ (a) L. Goerigk and S. Grimme, *J. Chem. Theory Comput.* **2011**, *7*, 291-309.; (b) M. Head-Gordon, J. A. Pople, and M. J. Frisch, Chem. Phys. Lett. **1988**, *153*, 503.

⁶ (a) J. Contreras-Garcia, E. Johnson, S. Keinan, R. Chaudret, J-P. Piquemal, D. Beratan, W. Yang, J. *Chem. Theor. Comp.* **2011**, *7*, 625; (b) E R. Johnson, S. Keinan, P. Mori-Sanchez, J. Contreras-Garcia, A. J. Cohen, and W. Yang, J. Am. Chem. Soc. **2010**, *132*, 6498.