Supporting Information for

Tailored Oxido-Vanadium(V) Cage Complexes for Selective Sulfoxidation in Confined Spaces

Dawei Zhang,^[a,b] Kelsey Jamieson,^[b] Laure Guy,^{*[b]} Guohua Gao,^{*[a]} Jean-Pierre Dutasta,^[b] and Alexandre Martinez^{*[b,c]}

^[a] Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, P. R. China
 ^[b] Laboratoire de Chimie, École Normale Supérieure de Lyon, CNRS, UCBL, 46 allée d'Italie, F-69364 Lyon, France
 ^[c] Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France

Corresponding Author

laure.guy@ens-lyon.fr; ghgao@chem.ecnu.edu.cn; alexandre.martinez@ens-lyon.fr

Table of Contents

1.	Materials and instrumentation	2
2.	Synthesis and characterization	2
3.	Catalytic properties	12
4.	Mechanism investigation	13
5.	References	15
6.	NMR spectra	16

1. Materials and instrumentation

All solvents used were of commercial grade and were dried prior to use over molecular sieves. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker Avance spectrometer operating at 500.10 MHz and 125.76 MHz for ¹H NMR and ¹³C NMR spectra, respectively. ¹H NMR chemical shifts (δ) are reported in ppm and referenced to the protonated residual solvent signal. Mass spectra were recorded by the Centre de Spectrométrie de Masse, Institute of Chemistry, Lyon. HPLC analyses were performed on an Agilent-1100 apparatus (binary pump, autosampler, column, thermostat, and diode array detector) using Chiralpack IC (0.46 × 25 cm) column.

2. Synthesis and characterization

S-7/R-7: A solution of K_2CO_3 (3.7 g, 27 mmol) and (*S*)-(-)-1,1'-Bi(2-naphthol) (6.0 g, 20.9 mmol) in acetone (45 mL) was stirred at room temperature for 1 h under argon. Then 5 mL acetone solution of allyl bromide (2.8 g, 23 mmol) was added in one portion. After reflux under argon for 48 h, the solvent was evaporated. The mixture was then dissolved in CH₂Cl₂, and washed with distilled water for 3 times. The organic phase was dried over anhydrous Na₂SO₄, filtrated and evaporated. After column chromatography over silica gel (CH₂Cl₂/petroleum ether 3:2), 4.8 g (70%) S-7 was obtained as a white solid.

¹**H NMR** (CD₂Cl₂, 298K, 500.1 MHz): δ 8.08 (d, *J* = 9.1 Hz, 1H); 7.94 (d, *J* = 8.8 Hz, 2H); 7.90 (d, *J* = 8.1 Hz, 1H); 7.50 (d, *J* = 9.1 Hz, 1H); 7.41 (t, *J* = 7.4 Hz, 1H); 7.36-7.29 (m, 3H); 7.24 (t, *J* = 8.5 Hz, 1H); 7.16 (d, *J* = 8.5 Hz, 1H); 7.05 (d, *J* = 8.4 Hz, 1H); 5.86-5.80 (m, 1H); 5.12-5.08 (m, 2H); 5.03 (s, 1H); 4.63-4.61 (m, 2H).

¹³C NMR (CD₂Cl₂, 298K, 125.7 MHz): δ 155.0, 151.3, 134.0, 133.8, 133.2, 130.8, 129.7, 129.6, 129.1, 128.2, 128.1, 127.1, 126.4, 124.6(9), 124.6(5), 124.2, 123.2, 117.4, 116.9, 116.0, 115.4, 115.1, 69.8.

ESI-HRMS m/z: found 349.1196, calcd for C₂₃H₁₈NaO₂ [M+Na]⁺ 349.1199.

S-S-8: To NaH (131 mg, 3.28 mmol) (60% suspension in oil), a solution of S-7 (622 mg, 1.91 mmol) in DMF (22 mL) was added at room temperature. After stirring under argon for 60 min, a solution of S-(+)-glycidyl nosylate (621 mg, 2.40 mmol) in DMF (8 mL) was added. The mixture was stirred at room temperature under argon for 24 h. Then the reaction was quenched by adding saturated NH₄Cl solution and the resulting mixture was diluted with water and extracted with ethyl acetate. The organic phase was washed with water, dried over anhydrous Na₂SO₄, filtrated and evaporated. After column chromatography over silica gel (CH₂Cl₂ as eluent), 730 mg (100 %) S-S-**8** was obtained as a white solid.

¹**H NMR** (CD₂Cl₂, 298K, 500.1 MHz): δ 8.01 (d, J= 9.0 Hz, 2H); 7.92 (d, J= 8.2 Hz, 2H); 7.50 (d, J= 9.1 Hz, 1H); 7.47 (d, J= 9.1 Hz, 1H); 7.36 (q, J= 6.7 Hz, 2H); 7.25 (t, J= 8.1 Hz, 2H); 7.12 (t, J= 8.3 Hz, 2H); 5.85-5.79 (m, 1H); 5.07-5.04 (m, 2H); 4.59-4.58 (m, 2H); 4.26 (dd, J= 2.6, 11.6 Hz, 1H); 3.98 (dd, J= 5.4, 11.6 Hz, 1H); 3.0 (bs, 1H); 2.59 (t, J= 4.7 Hz, 1H); 2.34 (dd, J= 2.5, 4.8 Hz, 1H).

¹³C NMR (CD₂Cl₂, 298K, 125.7 MHz): δ 154.0(3), 153.9(8), 133.9(8), 133.9(5), 133.7, 129.6, 129.4, 129.3(0), 129.2(5), 127.9, 126.3, 125.2, 125.0, 123.8, 123.6, 120.5, 119.6, 116.3, 115.8, 115.3, 70.2, 69.8, 50.2, 44.0.

ESI-HRMS m/z: found 405.1455, calcd for $C_{26}H_{22}NaO_3$ [M+Na]⁺ 405.1461.

S-R-8: The procedure was similar as that of S-S-**8** using the starting materials with the corresponding chirality in 90% yield.

¹**H NMR** (CD₂Cl₂, 298K, 500.1 MHz): δ 8.02 (d, *J* = 8.9 Hz, 2H); 7.93 (d, *J* = 8.0 Hz, 2H); 7.50 (t, *J* = 9.0 Hz, 2H); 7.38 (q, *J* = 7.1 Hz, 2H); 7.26 (bs, 2H); 7.16-7.12 (m, 2H); 5.87-5.81 (m, 1H); 5.10-5.06 (m, 2H); 4.61 (bs, 2H); 4.23 (d, *J* = 11.4 Hz, 1H); 4.00 (dd, *J* = 5.3, 11.4 Hz, 1H); 2.99 (bs, 1H); 2.60 (bs, 1H); 2.39 (bs, 1H).

¹³C NMR (CD₂Cl₂, 298K, 125.7 MHz): δ 154.1, 154.0, 134.0(0), 133.9(8), 133.7, 129.6, 129.4, 129.3(3), 129.3(0), 128.0, 126.3(4), 126.3(1), 125.3, 125.1, 123.9, 123.6, 120.6, 119.7, 116.4,

115.9, 115.3, 70.4, 69.8, 50.1, 44.1.

ESI-HRMS m/z: found 405.1456, calcd for $C_{26}H_{22}NaO_3$ [M+Na]⁺ 405.1461.

(*S*,*S*,*S*)-(*S*,*S*,*S*)-10: To a solution of 7N NH₃ in methanol (75 mL, 525 mmol), (*S*,*S*,*S*)-(*S*,*S*,*S*)-8 (450 mg, 1.18 mmol) was added. After stirring at 50 °C for 12 h under argon, the solvent was evaporated. 10 mL pentane was added and evaporated, which was repeated for 3 times to fully remove the residue NH₃. Then 2.0 equiv. of (*S*,*S*,*S*)-(*S*,*S*,*S*)-8 (900 mg, 2.35 mmol) and 150 mL MeOH were added under argon. The solution was stirred at 60 °C for 5 days. After evaporation of the solvent, the crude product was purified by column chromatography over silica gel (CH₂Cl₂/MeOH 200:3), 820 mg (60%) (*S*,*S*,*S*)-(*S*,*S*,*S*)-10 was obtained as a white solid.

¹**H NMR** (CD₂Cl₂, 298K, 500.1 MHz): δ 8.02 (d, *J* = 9.0 Hz, 3H); 7.93 (d, *J* = 8.1 Hz, 3H); 7.79 (d, *J* = 9.0 Hz, 3H); 7.75 (d, *J* = 8.1 Hz, 3H); 7.45 (d, *J* = 9.0 Hz, 3H); 7.37 (t, *J* = 7.1 Hz, 3H); 7.30 (d, *J* = 9.1 Hz, 3H); 7.26 (q, *J* = 7.6 Hz, 6H); 7.17 (t, *J* = 7.4 Hz, 3H); 7.12 (d, *J* = 8.4 Hz, 3H); 7.04 (d, *J* = 8.5 Hz, 3H); 5.76-5.68 (m, 3H); 4.99-4.95 (m, 6H); 4.51-4.43 (m, 6H); 3.96 (dd, *J* = 3.6, 9.8 Hz, 3H); 3.68 (dd, *J* = 4.4, 9.8 Hz, 3H); 3.00-2.97 (m, 3H); 1.51 (s, 3H); 1.38 (dd, *J* = 2.9, 13.4 Hz, 3H).

¹³C NMR (CD₂Cl₂, 298K, 125.7 MHz): δ 154.1, 153.8, 133.9(2), 133.8(9), 133.5, 129.5, 129.4,
129.3, 129.2, 128.0, 127.9, 126.3(4), 126.3(2), 125.1(5), 125.0(6), 123.7(3), 123.6(9), 120.0,
119.9, 116.6, 115.7, 115.3, 71.2, 70.0, 66.3, 56.2.

ESI-HRMS m/z: found 1064.5011, calcd for $C_{78}H_{70}NO_9 [M+H]^+$ 1164.5045.

(*S*,*S*,*S*)-(*R*,*R*,*R*)-10: The procedure was similar as that of (*S*,*S*,*S*)-(*S*,*S*,*S*)-10 using the starting materials with the corresponding chirality in 64% yield.

¹**H NMR** (CD₂Cl₂, 298K, 500.1 MHz): δ 8.01 (d, *J* = 9.0 Hz, 3H); 7.93 (d, *J* = 8.2 Hz, 3H); 7.83 (d, *J* = 9.1 Hz, 3H); 7.75 (d, *J* = 8.1 Hz, 3H); 7.44 (d, *J* = 9.1 Hz, 3H); 7.37 (t, *J* = 7.1 Hz, 3H); 7.33

(d, J = 9.0 Hz, 3H); 7.26 (t, J = 7.4 Hz, 3H); 7.21 (t, J = 7.2 Hz, 3H); 7.14-7.05 (m, 9H); 5.78-5.70 (m, 3H); 5.00-4.97 (m, 6H); 4.53-4.45 (m, 6H); 3.79 (d, J = 4.8 Hz, 6H); 3.12-3.10 (m, 3H); 1.70-1.59 (m, 6H).

¹³C NMR (CD₂Cl₂, 298K, 125.7 MHz): δ 154.1, 153.7, 134.0, 133.9, 133.5, 129.5(2), 129.4(5), 129.3(2), 129.2(9), 128.0, 127.9, 126.4, 126.3, 125.2, 125.1, 123.8, 123.7, 120.2, 119.9, 116.5, 115.7, 115.4, 71.9, 69.9, 66.7, 56.7.

ESI-HRMS m/z: found 1064.5006, calcd for $C_{78}H_{70}NO_9 [M+H]^+$ 1164.5045.

(*S*,*S*,*S*)-(*S*,*S*,*S*)-11: To a mixture solution of CH_2CI_2 and MeOH (1/1), (*S*,*S*,*S*)-(*S*,*S*,*S*)-10 (800 mg, 0.69 mmol), Pd(PPh₃)₄ (794 mg, 0.69 mmol) and K₂CO₃ (950 mg, 6.87 mmol) were added. The mixture was stirred at room temperature for 1 night under argon. After evaporation of the solvent, CH_2CI_2 and distilled water were added to the mixture. The two layers were then separated and the aqueous phase was extracted with CH_2CI_2 (1×100 mL), and the organic phase was washed with distilled water (2×50 mL). The combined organic solutions were dried over anhydrous Na_2SO_4 , filtrated and evaporated. The crude product was purified by column chromatography on silica gel (first with $CH_2CI_2/MeOH$ 40/1, then use 200/9) to give (*S*,*S*,*S*)-(*S*,*S*,*S*)-11 as a beige solid (402 mg, 56%).

¹**H NMR** (DMSO- d_6 , 298K, 500.1 MHz): δ 9.27 (s, 3H); 8.03 (d, J = 9.1 Hz, 3H); 7.94 (d, J = 8.1 Hz, 3H); 7.63 (d, J = 8.5 Hz, 6H); 7.56 (d, J = 9.1 Hz, 3H); 7.34 (t, J = 7.2 Hz, 3H); 7.26-7.22 (m, 6H); 7.16-7.14 (m, 6H); 7.03 (d, J = 8.5 Hz, 3H); 6.87-6.85 (m, 3H); 3.96 (s, 3H); 3.87 (dd, J = 3.3, 9.9 Hz, 3H); 3.57 (dd, J = 3.9, 9.8 Hz, 3H); 2.84 (s, 3H); 1.26 (t, J = 12.7 Hz, 3H); 0.92 (d, J = 12.2 Hz, 3H).

¹³C NMR (DMSO-*d*₆, 298K, 125.7 MHz): δ 155.1, 153.1, 134.4, 134.0, 129.6, 129.5, 129.3, 128.4, 128.3, 128.2, 126.6, 126.4, 125.3, 124.6, 123.9, 122.7, 120.2, 118.8, 116.7, 115.7, 72.1, 66.0, 57.4.

ESI-HRMS m/z: found 1044.4064, calcd for $C_{69}H_{58}NO_9 [M+H]^+$ 1044.4106.

(*S*,*S*,*S*)-(*R*,*R*,*R*)-11: The procedure was similar as that of (*S*,*S*,*S*)-(*S*,*S*,*S*)-11 using the starting materials with the corresponding chirality in 55% yield.

¹**H NMR** (DMSO-*d*₆, 298K, 500.1 MHz): δ 9.25 (s, 3H); 8.03 (d, J = 9.0 Hz, 3H); 7.94 (d, J = 8.1 Hz, 3H); 7.68 (d, J = 8.8 Hz, 3H); 7.64-7.62 (m, 3H); 7.54 (d, J = 9.0 Hz, 3H); 7.34 (t, J = 7.3 Hz, 3H); 7.27-7.23 (m, 6H); 7.04-7.01 (m, 9H); 6.84 (d, J = 7.3 Hz, 3H); 4.08 (s, 3H); 3.74-3.64 (m, 6H); 3.03 (s, 3H); 1.42 (t, J = 11.3 Hz, 3H); 1.26 (d, J = 11.7 Hz, 3H).

¹³C NMR (DMSO-*d*₆, 298K, 125.7 MHz): δ 155.1, 153.1, 134.4, 134.0, 129.7, 129.6, 129.3, 128.4, 128.3, 126.6, 126.3, 125.4, 124.6, 124.0, 122.7, 120.5, 118.8, 117.2, 115.6, 72.6, 66.5, 58.1.

ESI-HRMS m/z: found 1044.4054, calcd for $C_{69}H_{58}NO_9 [M+H]^+$ 1044.4106.

(*S*,*S*,*S*)-(*S*,*S*,*S*)-12: A solution of Cs₂CO₃ (300 mg, 919 µmol) and (*S*,*S*,*S*)-(*S*,*S*,*S*)-11 (160 mg, 153 µmol) in DMF (140 mL) was stirred at 25 °C for 15 min under argon. Then 140 mL DMF solution of tris(bromomethyl)benzene (60 mg, 169 µmol) was added dropwise. The reaction solution was stirred at 25 °C for 48 h. Afterwards, 200 mL CH₂Cl₂ was added to the reaction, followed by washing with brine (100×5) to remove DMF and Cs₂CO₃. The organic phase was dried over anhydrous Na₂SO₄, filtrated and evaporated. The crude product was purified by column chromatography on silica gel (first with CH₂Cl₂/MeOH 200/1, then use 200/3) to give (*S*,*S*,*S*)-(*S*,*S*,*S*)-12 (53 mg, 30%) as a white solid.

¹**H NMR** (CD₂Cl₂, 298K, 500.1 MHz): δ 8.31 (d, *J* = 9.1 Hz, 3H); 8.24 (d, *J* = 8.8 Hz, 3H); 8.13 (d, *J* = 8.2 Hz, 3H); 8.06 (d, *J* = 8.1 Hz, 3H); 7.73 (d, *J* = 8.8 Hz, 3H); 7.62 (d, *J* = 9.2 Hz, 3H); 7.50-7.47 (m, 3H); 7.39 (t, *J* = 7.3 Hz, 3H); 7.34 (t, *J* = 8.1 Hz, 3H); 7.28 (d, *J* = 8.4 Hz, 3H); 7.21 (t, *J* = 7.6 Hz, 3H); 7.06 (d, *J* = 8.6 Hz, 3H); 5.26 (s, 3H); 4.48 (d, *J* = 10.5 Hz, 3H); 4.30 (d, *J* = 12.2 Hz, 3H); 4.25 (d, *J* = 10.5 Hz, 3H); 3.59 (t, *J* = 10.1 Hz, 3H); 3.38 (bs, 6H); 2.45-2.42

(m, 6H).

¹³C NMR (CD₂Cl₂, 298K, 125.7 MHz): δ 153.8, 136.1, 134.3, 134.1, 130.6, 129.8, 129.3, 129.2, 128.3, 127.9, 126.8, 126.7, 125.7, 125.5, 124.9, 124.7, 123.9, 123.2, 119.8, 118.1, 114.6, 73.2, 71.5, 70.5, 62.2.

ESI-HRMS m/z: found 1158.4547, calcd for $C_{78}H_{64}NO_9 [M+H]^+$ 1158.4576.

(*S*,*S*,*S*)-(*R*,*R*,*R*)-12: The procedure was similar as that of (*S*,*S*,*S*)-(*S*,*S*,*S*)-12 using the starting materials with the corresponding chirality in 43% yield.

¹**H NMR** (CD₂Cl₂, 298K, 500.1 MHz): δ 8.31 (d, *J* = 9.0 Hz, 3H); 8.24 (d, *J* = 9.0 Hz, 3H); 8.06 (t, *J* = 8.7 Hz, 6H); 7.78 (d, *J* = 9.1 Hz, 3H); 7.62 (d, *J* = 9.0 Hz, 3H); 7.48-7.43 (m, 6H); 7.30 (q, *J* = 8.7 Hz, 6H); 7.15 (d, *J* = 8.6 Hz, 3H); 7.12 (d, *J* = 8.5 Hz, 3H); 6.44 (s, 3H); 6.22 (s, 3H); 4.85 (d, *J* = 11.9 Hz, 3H); 4.61 (d, *J* = 11.9 Hz, 3H); 4.21 (dd, *J* = 4.1, 10.5 Hz, 3H); 4.08-4.07 (m, 3H); 3.83-3.80 (m, 3H); 2.65 (t, *J* = 12.7 Hz, 3H); 2.15 (d, *J* = 12.7 Hz, 3H).

¹³C NMR (CD₂Cl₂, 298K, 125.7 MHz): δ 153.7, 153.4, 137.5, 134.3, 134.2, 129.9(3), 129.8(9), 129.8, 128.1(1), 128.0(6), 126.9, 126.7, 125.4, 125.2, 124.5, 124.3, 121.2, 120.7, 116.0, 115.6, 72.2, 71.1, 66.6, 64.3.

ESI-HRMS m/z: found 1158.4543, calcd for $C_{78}H_{64}NO_9 [M+H]^+$ 1158.4576.

(*S*,*S*,*S*)-(*S*,*S*,*S*)-1: To 15 mL CHCl₃, (*S*,*S*,*S*)-(*S*,*S*,*S*)-12 (70 mg, 60.4 µmol) was added. The solution was stirred at room temperature for 5 min. Then vanadium(V) oxytriisopropoxide (14.2 µL, 60.4 µmol) was added to the solution, which was further stirred for 1 h. After evaporation of the solvent, the mixture was dissolved in 10 mL CH₂Cl₂. The solution was filtered by syringe filter (pore size: 0.45 µm), followed by evaporation to give the complex (*S*,*S*,*S*)-(*S*,*S*,*S*)-1 (67 mg, 91%) as a dark green solid.

¹**H NMR** (CD₂Cl₂, 298K, 500.1 MHz): δ 8.24 (t, *J* = 8.3 Hz, 6H); 8.17 (d, *J* = 8.2 Hz, 3H); 8.04 (d, *J* = 8.1 Hz, 3H); 7.60 (d, *J* = 8.9 Hz, 3H); 7.54 (d, *J* = 9.2 Hz, 3H); 7.48-7.44 (m, 6H); 7.33-7.27

(m, 6H); 7.18-7.13 (m, 6H); 5.57 (s, 3H); 4.44 (q, *J* = 12.6 Hz, 6H); 4.36-4.35 (m, 3H); 4.16 (t, *J* = 11.1 Hz, 3H); 3.89 (dd, *J* = 4.3, 11.5 Hz, 3H); 2.09 (dd, *J* = 3.6, 12.8 Hz, 3H); 1.83 (t, *J* = 11.5 Hz, 3H).

¹³C NMR (CD₂Cl₂, 298K, 125.7 MHz): δ 154.0, 153.3, 136.8, 134.4, 134.0, 129.9, 129.8, 129.5, 129.3, 128.1, 127.9, 127.0, 126.8, 126.4, 125.2, 125.1, 124.4(2), 124.3(6), 121.4, 120.7, 116.5, 114.2, 83.1, 71.6, 69.3, 57.1.

ESI-HRMS m/z: found 1244.3526, calcd for $C_{78}H_{60}NNaO_{10}V[M+Na]^{+}$ 1244.3549.

(*S*,*S*,*S*)-(*R*,*R*,*R*)-1: A similar procedure as that of (*S*,*S*,*S*)-(*S*,*S*,*S*)-1 has been used for the synthesis of (*S*,*S*,*S*)-(*R*,*R*,*S*)-1 using the corresponding ligand. However, the reaction failed to give the desired complex as the ¹H NMR spectrum is too complicated to analyze. The different behavior from the synthesis of (*S*,*S*,*S*)-(*S*,*S*,*S*)-1 probably because of its more hindered conformation of the cavity.

Scheme S1 Synthesis of the oxido-vanadium(V) hemicryptophane complexes 2.

P-(*S*,*S*,*S*)-(*S*,*S*,*S*)-2: The ligand of *P*-(*S*,*S*,*S*)-(*S*,*S*,*S*)-2 complex was synthesized according to our previous procedure.^[1] To 3 mL CHCl₃, the ligand of *P*-(*S*,*S*,*S*)-(*S*,*S*,*S*)-2 (10 mg, 6.5 µmol) was added. The solution was stirred at room temperature for 5 min. Then vanadium(V) oxytriisopropoxide (4.8 µL, 19.6 µmol) was added to the solution, which was further stirred for 1 h. After evaporation of the solvent, the mixture was dissolved in 5 mL CH₂Cl₂. The solution was filtered by syringe filter (pore size: 0.45 µm), followed by evaporation to give the complex *P*-(*S*,*S*,*S*)-(*S*,*S*,*S*)-2 (10 mg, 96%) as a dark green solid.

¹**H NMR** (C_6D_6 , 298K, 500.1 MHz): δ 8.42 (d, J = 9.2 Hz, 3H); 7.84-7.78 (m 12H); 7.50 (d, J = 8.5 Hz, 3H); 7.31-7.17 (m, 12H); 7.02-6.98 (m, 6H); 6.60 (s, 3H); 6.57 (s, 3H); 4.70 (d, J = 13.7 Hz, 3H); 4.23 (t, J = 11.2 Hz, 3H); 4.02 (t, J = 10.2 Hz, 3H); 3.78-3.75 (m, 6H); 3.45-3.40 (m,

9H); 3.04-2.98 (m, 12H); 0.72 (dd, J = 3.8, 13.3 Hz, 3H); 0.23 (t, J = 12.6 Hz, 3H).

¹³C NMR (C₆D₆, 298K, 125.7 MHz): δ 156.3, 154.3, 147.7, 146.6, 134.4, 133.8, 131.8, 131.2, 130.2, 130.0, 129.5, 129.2, 128.2, 127.2, 126.5, 126.3, 125.7, 125.3, 124.4, 123.8, 121.1, 121.0, 119.9, 116.1, 112.3, 111.9, 81.4, 72.5, 70.0, 67.2, 56.0, 53.8, 36.7.

ESI-HRMS m/z: found 1617.5128, calcd for $C_{99}H_{84}NNaO_{16}V[M+Na]^{+}$ 1616.5122.

M-(*S*,*S*,*S*)-(*S*,*S*,*S*)-2, *P*-(*S*,*S*,*S*)-(*R*,*R*,*R*)-2 and *M*-(*S*,*S*,*S*)-(*R*,*R*,*R*)-2: The procedure for each of the complexes from their corresponding ligands was similar as that of *P*-(*S*,*S*,*S*)-(*S*,*S*,*S*)-2 except that only 1.0 equiv. of vanadium(V) oxytriisopropoxide instead of 3 equivalents was used. The reason for this difference is because the ligand of *P*-(*S*,*S*,*S*)-(*S*,*S*,*S*)-2 shows an extremely imploded conformation, which suffers from a slow vanadium chemical complexation kinetics. For all the complexes, the yields are higher than 90%.

M-(*S*,*S*,*S*)-(*S*,*S*,*S*)-2:

¹**H NMR** (C_6D_6 , 298K, 500.1 MHz): δ 8.13 (d, J = 9.1 Hz, 3H); 7.73 (d, J = 9.1 Hz, 3H); 7.69 (d, J = 9.1 Hz, 3H); 7.63 (dd, J = 8.2, 13.2 Hz, 6H); 7.50 (d, J = 9.1 Hz, 3H); 7.26 (d, J = 8.5 Hz, 3H); 7.19 (d, J = 8.6 Hz, 3H); 7.10 (d, J = 7.1 Hz, 3H); 7.05-6.98 (m, 6H); 6.88 (t, J = 8.2 Hz, 3H); 6.75 (s, 3H); 6.23 (s, 3H); 4.37 (d, J = 13.6 Hz, 6H); 4.06-4.02 (m, 3H); 3.94-3.91 (m, 3H); 3.80-3.77 (m, 3H); 3.70-3.66 (m, 3H); 3.59-3.53 (m, 6H); 3.20 (d, J = 13.6 Hz, 3H); 2.40 (s, 9H); 1.94 (t, J = 12.2 Hz, 3H); 0.90 (dd, J = 3.7, 12.9 HZ, 3H).

¹³C NMR (C₆D₆, 298K, 125.7 MHz): δ 155.4, 153.4, 148.8, 146.0, 134.5, 133.7, 133.6, 131.7, 130.3, 130.1, 129.6, 129.0, 128.1, 127.8, 126.9, 126.3, 125.7, 125.2, 124.4, 124.1, 122.0, 121.0, 119.4, 118.3, 116.8, 112.7, 83.7, 73.9, 69.1, 67.3, 54.3, 54.2, 36.4.

ESI-HRMS m/z: found 1616.5109, calcd for C₉₉H₈₄NNaO₁₆V [M+Na]⁺ 1616.5122.

P-(*S*,*S*,*S*)-(*R*,*R*,*R*)-2:

¹**H NMR** (C₆D₆, 298K, 500.1 MHz): δ 7.95 (d, J = 8.4 Hz, 3H); 7.78 (d, J = 8.1 Hz, 3H); 7.74 (d, J = 9.0 Hz, 3H); 7.65 (d, J = 8.2 Hz, 3H); 7.39-7.34 (m, 6H); 7.30-7.28 (m, 6H); 7.21 (d, J = 8.5 Hz, 3H); 7.07 (t, J = 7.7 Hz, 3H); 7.03 (d, J = 9.0 Hz, 3H); 6.93 (t, J = 8.0 Hz, 3H); 6.59(2) (s, 3H); 6.58(9) (s, 3H); 4.66 (d, J = 13.7 Hz, 3H); 4.24 (dd, J = 5.7, 12.1 Hz, 3H); 3.92-3.84 (m,

6H); 3.78-3.70 (m, 9H); 3.37 (d, *J* = 13.8 Hz, 3H); 3.25-3.20 (m, 3H); 3.06 (s, 9H); 1.04 (dd, *J* = 3.7, 13.2 HZ, 3H); 0.79 (dd, *J* = 10.6, 12.7 HZ, 3H).

¹³C NMR (CDCl₃, 298K, 125.7 MHz): δ 155.3, 153.6, 148.3, 147.0, 133.9, 133.5, 132.0, 131.7, 129.6, 129.3, 128.8, 128.0, 126.8, 126.6, 126.5, 126.3, 125.2, 124.7, 123.8, 121.7, 119.9, 119.7, 114.5, 114.0, 113.7, 81.6, 71.0, 69.6, 68.9, 56.5, 54.6, 36.3.

ESI-HRMS m/z: found 1616.5066, calcd for C₉₉H₈₄NNaO₁₆V [M+Na]⁺ 1616.5122.

M-(*S*,*S*,*S*)-(*R*,*R*,*R*)-2:

¹**H NMR** (CDCl₃, 298K, 500.1 MHz): δ 8.03 (d, *J* = 9.0 Hz, 3H); 7.97 (d, *J* = 8.1 Hz, 3H); 7.93 (d, *J* = 8.2 Hz, 3H); 7.51 (d, *J* = 9.1 Hz, 3H); 7.46-7.43 (m, 6H); 7.35-7.33 (m, 6H); 7.21-7.15 (m, 6H); 7.10 (s, 3H); 7.01 (d, *J* = 8.5 Hz, 3H); 6.92 (s, 3H); 6.81 (d, *J* = 8.9 Hz, 3H); 4.95 (d, *J* = 13.8 Hz, 3H); 4.50-4.45 (m, 3H); 4.21-4.17 (m, 9H); 3.70-3.67 (m, 6H); 3.38-3.35 (m, 12H); 3.05-3.04 (m, 3H); 0.95 (dd, *J* = 3.8, 13.1 HZ, 3H); 0.62 (t, *J* = 11.3 Hz, 3H).

¹³C NMR (CDCl₃, 298K, 125.7 MHz): δ 154.6, 153.3, 148.7, 145.9, 134.3, 133.9, 133.4, 132.0,
130.3, 130.1, 129.9, 129.6, 128.8, 128.4, 126.9, 126.6, 125.3, 125.0, 124.7, 124.3, 123.2,
122.0, 118.7, 118.6, 116.5, 113.0, 81.9, 72.4, 69.0, 66.7, 55.1, 54.4, 36.7.

ESI-HRMS m/z: found 1616.5090, calcd for $C_{99}H_{84}NNaO_{16}V[M+Na]^{+}$ 1616.5122.

Scheme S2 Synthesis of the oxido-vanadium(V) complexes 4.

(*S*,*S*,*S*)-(*S*,*S*,*S*)-4: The ligand of (*S*,*S*,*S*)-(*S*,*S*,*S*)-4 complex was synthesized according to our previous procedure.^[1] To 30 mL CHCl₃, the ligand of (*S*,*S*,*S*)-(*S*,*S*,*S*)-4 (300 mg, 276 µmol) was added. The solution was stirred at room temperature for 5 min. Then vanadium(V) oxytriisopropoxide (64.8 µL, 276 µmol) was added to the solution, which was further stirred for 1 h. After evaporation of the solvent, the mixture was dissolved in 15 mL CH₂Cl₂. The solution was filtered by syringe filter (pore size: 0.45 µm), followed by evaporation to give the complex (*S*,*S*,*S*)-(*S*,*S*,*S*)-4 (318 mg, 100%) as a yellow solid.

¹**H NMR** (CD₂Cl₂, 298K, 500.1 MHz): δ 8.06 (d, J = 9.0 Hz, 3H); 7.94 (d, J = 8.2 Hz, 3H); 7.82 (d, J = 9.1 Hz, 3H); 7.74 (d, J = 8.1 Hz, 3H); 7.49 (d, J = 9.0 Hz, 3H); 7.41-7.36 (m, 6H); 7.30-7.23 (m, 9H); 7.11 (d, J = 8.4 Hz, 3H); 7.06 (d, J = 8.4 Hz, 3H); 4.07 (dd, J = 3.2, 9.8 Hz, 3H); 3.74 (s, 9H); 3.65-3.59 (m, 3H); 3.53-3.52 (m, 3H); 1.48 (t, J = 12.1 Hz, 3H); 1.24 (dd, J = 3.5, 12.8 HZ, 3H).

¹³C NMR (CD₂Cl₂, 298K, 125.7 MHz): δ 155.2, 153.9, 133.9, 133.8, 129.7, 129.6, 129.0, 128.9, 128.0, 127.8, 126.5, 126.4, 125.0, 124.9, 124.0, 123.5, 120.4, 119.0, 115.7, 114.1, 82.2, 70.3, 56.6, 54.1.

ESI-HRMS m/z: found 1172.3518, calcd for $C_{72}H_{60}NNaO_{10}V[M+Na]^{+}$ 1172.3549.

(*S*,*S*,*S*)-(*R*,*R*,*R*)-4: The procedure was similar as that of (*S*,*S*,*S*)-(*S*,*S*,*S*)-4 using the corresponding ligand in 94% yield.

¹**H NMR** (CD₂Cl₂, 298K, 500.1 MHz): δ 8.03 (d, *J* = 9.0 Hz, 3H); 7.95 (t, *J* = 9.3 Hz, 6H); 7.76 (d, *J* = 8.1 Hz, 3H); 7.49 (d, *J* = 9.1 Hz, 3H); 7.46 (d, *J* = 9.0 Hz, 3H); 7.40 (t, *J* = 7.3 Hz, 3H); 7.28 (t, *J* = 7.9 Hz, 3H); 7.21-7.13 (m, 9H); 7.05 (d, *J* = 8.4 Hz, 3H); 3.87 (s, 9H); 3.74-3.67 (m, 6H); 3.64-3.61 (m, 3H); 1.46 (t, *J* = 12.5 Hz, 3H); 1.37 (dd, *J* = 3.8, 12.8 HZ, 3H).

¹³C NMR (CD₂Cl₂, 298K, 125.7 MHz): δ 154.7, 154.0, 134.1, 133.8, 130.0, 129.7, 129.5, 129.0,
128.1, 127.8, 126.6, 126.5, 125.2, 125.1, 124.2, 123.7, 121.1, 119.2, 116.9, 113.4, 82.1, 71.3,
56.4, 54.9.

ESI-HRMS m/z: found 1172.3535, calcd for $C_{72}H_{60}NNaO_{10}V[M+Na]^{+}$ 1172.3549.

3. Catalytic properties

Figure S1 Time course of oxidation of thioanisol with catalysts in different sets (conditions: 1.5 mol% catalyst, 1.0 equiv. of CHP, 0 °C, CH₂Cl₂).

Figure S2 Time course of oxidation of thioanisol with hemicryptophane catalyst *P*-(*S*,*S*,*S*)-(*S*,*S*,*S*)-**2** (conditions: 1.5 mol% catalyst, 1.0 equiv. of CHP, 0 °C, CH₂Cl₂).

Figure S3 Time course of oxidation of thioanisol with typical catalysts in different sets (conditions: 1.5 mol% catalyst, 1.0 equiv. of TBHP, 0 °C, CH₂Cl₂).

Figure S4 Changes of the cumulative TON over four-cycle experiments catalyzed by M-(*S*,*S*,*S*)-(*R*,*R*,*R*)-**2** with the development of time (conditions: 0.1 mol% catalyst, 1.0 equiv. of CHP, r.t., CH₂Cl₂; after each cycle, 1.0 equiv. of reaction substrate and CHP were reloaded; TON was calculated from the yield).

4. Mechanism investigation

Figure S5 ¹H NMR spectra (500 MHz, 298 K) of $Me_4N^+Pic^-(\mathbf{\nabla})$ in CD_2Cl_2 upon progressive addition of different equivalents of the host M-(S,S,S)-(R,R,R)-**2** (left side) and its titration curve fitted by HypNMR2008 (right side).

Figure S6 Time course of oxidation of benzylphenyl sulfide with typical catalysts (conditions: 1.5 mol% catalyst, 1.0 equiv. of CHP, 0 °C, CH₂Cl₂).

Figure S7 Time course of oxidation of benzylphenyl sulfide with hemicryptophane catalyst M-(S,S,S)-(R,R,R)-2 (conditions: 1.5 mol% catalyst, 1.0 equiv. of CHP, 0 °C, CH₂Cl₂).

Figure S8 Time course of oxidation of naphthylmethyl phenyl sulfide with typical catalysts (conditions: 1.5 mol% catalyst, 1.0 equiv. of CHP, 0 °C, CH₂Cl₂).

Figure S9 Time course of oxidation of naphthylmethyl phenyl sulfide with hemicryptophane catalyst M-(*S*,*S*,*S*)-(*R*,*R*,*R*)-**2** (conditions: 1.5 mol% catalyst, 1.0 equiv. of CHP, 0 °C, CH₂Cl₂).

Figure S10 (a) Initial rate dependence on the concentration of benzylphenyl sulfide in CH₂Cl₂ with 1.1 mM hemicryptophane catalyst *M*-(*S*,*S*,*S*)-(*R*,*R*,*R*)-2 and 110 mM CHP at 0 °C. (b) The corresponding Lineweaver-Burke line plotted by 1/rate as a function of 1/[benzylphenyl sulfide].

Figure S11 (a) Initial rate dependence on the concentration of naphthylmethyl phenyl sulfide in CH_2Cl_2 with 1.1 mM catalyst *M*-(*S*,*S*,*S*)-(*R*,*R*,*R*)-**2** and 110 mM CHP at 0 °C. (b) The corresponding Lineweaver-Burke line plotted by 1/rate as a function of 1/[naphthylmethyl phenyl sulfide].

5. References

[1] Zhang, D.; Mulatier, J.-C.; Cochrane, J. R.; Guy, L.; Gao, G.; Dutasta, J.-P.; Martinez, A. *Chem. Eur. J.*, 2016, **22**, 8038.

6. NMR spectra

