Supporting Information

Photochromic Torsional Switch (PTS): a Light-Driven Actuator for Dynamic Tuning of \(\pi \)-Conjugation Extension

[a] Laboratory of Macromolecular and Organic Materials, Institute of Material Science and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; [b] Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering and [c] Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; [d] Department of Theoretical Chemistry, Max-Planck-Institut für Kohlenforschung, D-45470 Mühlheim an der Ruhr, Germany.

giuseppe.sforazzini@epfl.ch

Table of Contents

1. Materials and methods page S2
2. Synthesis and characterization
 2.1 Synthesis of 1, precursors and model compound page S3
 2.2 NMR spectra of 1, precursors and model compounds page S9
 2.3 NMR spectra: trans-to-cis isomerization and PSS of 1 page S19
3. Computations of the molecular structures
 3.1 Replica-Exchange Molecular Dynamics (REMD) page S20
 3.2 Static computations page S20
4. Steady-state Spectroscopy
 4.1 Absorption Spectra page S21
 4.2 Cyclability page S22
 4.3 Thermal relaxation page S22
5. Time Dependent Density Functional Theory (TDDFT) calculations
 5.1 Computed absorption spectra page S23
 5.2 Excited states assignments: MOs pictures page S23
Section 1: General Experimental Details

Manipulations of air or water sensitive compounds were performed using standard high vacuum techniques. DCM, acetone, petroleum ether, heptanes, EtOAc and toluene solvents were purchased from Reactolab SA and distilled under reduced pressure before their use. All other reagents were used as commercially supplied. Acetonitrile (99.99%) and THF (99.99%) were purchased from Fischer Scientific. NBS (99%), K$_2$CO$_3$ (99+%, anhydrous), DMF (99.8%, extra dry, acroseal), and K$_3$PO$_4$ (97%, anhydrous) were purchased from Acros organics. Pd(PPh$_3$)$_2$Cl$_2$ (98%), sPhos (95+%), Bis(pinacolato)diboron, 6-bromo-1-hexene, and 3,5-dimethylaniline (98%) were purchased from Fluorochem Ltd. KOAc (99%) and NaNO$_2$ (98%) were purchased from Abcr. Dioxane (>99.5%), Pd(PPh$_3$)$_4$, and Grubbs catalyst 2nd generation were purchased from Sigma-Aldrich. 3,3’-Dibromo-2,2’-bithiophene (>98%) was purchased from TCI. Phenol (>99%) was purchased from SAFC. KOH pellets were purchased from Reactolab SA. Concentrated HCl (37%) was purchased from Carlo Erba Reagents. Analytical thin layer chromatography (TLC) was carried out on Merck aluminium backed silica gel 60 GF254 plates. Column chromatography was carried out on silica gel 60 GF254 (particle size 40 – 63 µm, Merck) using positive air pressure. NMR spectra were recorded at ambient probe temperature using the following Fourier transform instruments: Bruker Avance III 400 MHz (9.0 T) equipped with BBFO probe, and Bruker Avance III 600 MHz (14.1 T) equipped with TCI CryoProbe. Chemical shifts (δ$_H$ and δ$_C$) are reported in parts per million (ppm) relative to the residual solvent peak. Coupling constants (J) are reported in Hertz. 1H and 13C resonances were assigned with the aid of additional information from 1D & 2D NMR spectra (H,H-COSY, DEPT 135, HSQC and HMBC). Accurate mass determinations using ESI (HR ESI-MS) were performed on a Xevo G2-S QTOF mass spectrometer. UV-Vis spectra were recorded on a JASCO V-670 spectrophotometer and the absorption wavelengths (λ) are reported in nm (extinction coefficient ε in M$^{-1}$cm$^{-1}$). Photoisomerizations were carried using a Camag UV lamp TL 900/U.
Section 2: Synthesis and characterization

2.1. Synthesis of 1, precursors and model compound

Scheme S1: Synthetic scheme for the preparation of the photochromic torsional switches 1. (a) NaNO$_2$/HCl, phenol, water; (b) pinacolborane, Pd(dpdpf)Cl$_2$, KOAc, dioxane; (c) Ph(PPh$_3)_4$, K$_2$CO$_3$, dioxane/water; (d) BBr$_3$, DCM; (e) Ph(PPh$_3)_4$, K$_2$CO$_3$, DMF; (f) 6-bromo-1-hexene, K$_2$CO$_3$, DMF; (g) Grubbs catalyst 2nd generation, toluene.
Compound 2: This compound was synthesized according to reported procedures.[1]

Compound 3: This compound was synthesized by adapting a reported procedure.[2] Concentrated hydrochloric acid (10 mL) was added to a suspension of 4-bromo-3,5-dimethylaniline (5 g, 25.0 mmol) in water (100 mL). The mixture was cooled to 5 °C in an ice bath and stirred vigorously. A solution of NaNO₂ (1.9 g, 27.5 mmol) in water (15 ml) was then added dropwise to the cooled suspension, and the mixture was stirred for 1h. In a separate flask, NaOH 5M (25 ml) was added to a solution of phenol (2.8 g, 30.0 mmol) in water (20 mL), and cooled to 0 °C. The former mixture was then slowly transferred to the solution of phenol and vigorously stirred for 1h at 0 °C (pH = 2). The resultant precipitate was filtered. The filtrate was cooled to 5 °C in an ice bath and transferred to a new solution of phenol (2.8 g, 30.0 mmol) in water (20 mL) and NaOH 5M (25 ml) to obtain additional precipitate. The mixture was stirred for 1.5h at 0 °C (pH = 9). The obtained precipitate was filtered. The combined precipitates were purified by silica chromatography (R_f = 0.43, Heptane/Ethyl Acetate = 8:2) to give a bright yellow powder (6.66 g, 87.4%). ¹H NMR (400 MHz, CDCl₃): δ = 7.86 (d, 3J(H,H) = 8.51 Hz, 2H), 7.60 (s, 2H), 6.94 (d, 3J(H,H) = 8.51 Hz, 2H), 5.08 (br, 1H, OH), 2.51 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ = 158.3, 151.0, 147.4, 139.3, 130.0, 125.1, 122.1, 116.0, 24.2. HRMS (ESI, positive mode) m/z calculated for C₁₄H₁₃BrN₂O [M + H]+: 305.0290; found: 305.0292.

Compound 4: This compound was synthesized by adapting a reported procedure.[3] A mixture of 3 (5.0 g, 16.4 mmol), pinacolborane (5.0 g, 19.7 mmol), Pd(dppf)Cl₂ (670.0 mg, 82.0 mmol), and potassium acetate (4.8 g, 49.1 mmol) was dissolved in dioxane (25 ml) under argon atmosphere. The mixture was heated to 80 °C and stirred until all of 3 was consumed. The reaction was monitored by TLC using DCM/EtOAc (9.5:0.5) as eluent. After 6h the heating was stopped, the reaction was allowed to reach room temperature, diluted with ethyl acetate (150 ml) and washed with water. The organic layer was dried over MgSO₄, filtered, and the solvent removed under reduced pressure. The product was purified by silica chromatography (R_f = 0.53, DCM/Ethyl Acetate = 9.5:0.5) to give an orange powder (5.13 g, 88.9%). ¹H NMR (400 MHz, CDCl₃): δ = 7.84 (d, J = 8.7 Hz, 2H), 7.45 (s, 2H), 6.91 (d, J = 8.7 Hz, 2H), 5.25 (br, 1H, OH), 2.49 (s, 6H), 1.42 (s, 12H). ¹³C NMR (101 MHz, CDCl₃) δ = 158.6, 153.3, 147.1, 142.9, 124.9, 120.6, 115.9, 84.34, 84.29, 25.1, 22.3. HRMS (ESI, positive mode) m/z calculated for C₂₀H₂₆BN₂O₃ [M + H]+: 353.2040; found: 353.2039.

Compound 5: A mixture of 3,3-dibromo-2,2-bithiophene (5.0 g, 15.4 mmol), 2,6-dimethoxybenzeneboronic acid (3.37 g, 18.5 mmol), Pd(PPh₃)₄ (1.8 g, 1.54 mmol) and K₂CO₃ (8.50 g, 61.6 mmol) were dissolved in dioxane/water (95 mL/5 mL) under argon atmosphere. The mixture was heated to 80 °C and stirred for 48 hours. The reaction was allowed to reach room temperature, diluted with ethyl acetate (250 ml) and washed with water. The organic layer was dried over MgSO₄, filtered, and the solvent...
removed under reduced pressure. The product was purified by silica chromatography (R_f = 0.53, DCM/Pet. Ether = 1:1) to give a white solid (3.87 g, 66%). ¹H NMR (400 MHz, CDCl₃): δ = 7.43 (d, J = 5.5 Hz, 1H), 7.27 (t, J = 8.6 Hz, 1H), 7.10 (d, J = 5.5 Hz, 1H), 7.08 (d, J = 5.5 Hz, 1H), 6.90 (d, J = 5.5 Hz, 1H), 6.54 (d, J = 8.6 Hz, 2H), 3.53 (s, 6H). ¹³C NMR (101 MHz, CDCl₃): δ = 158.4, 133.8, 132.3, 131.1, 130.5, 129.5, 125.7, 125.0, 113.8, 109.6, 104.1, 55.8. HRMS (ESI, positive mode) m/z calculated for C₁₆H₁₄BrO₂S₂ [M + H]⁺: 380.9613, found: 380.9607; ε = 1.25x10⁴ M⁻¹cm⁻¹ (λ_max = 249 nm).

Compound 6: This compound was synthesized by adapting a reported procedure.[⁴] A solution of 5 (3.6 g, 9.44 mmol) in DCM (180 ml) was cooled to 0°C. BBr₃ 1M (11.3 mL, 11.32 mmol) was slowly added and the mixture stirred for 2 hrs. MeOH (22 ml) was added and the stirred for 15 min at 0°C. The mixture was allowed to reach room temperature, and washed with water. The organic layer was dried over MgSO₄, filtered, and the solvent removed under reduced pressure. The product was purified by silica chromatography (R_f = 0.32, DCM/PetEther = 1:1) to give 5 as white solid (2.3 g, 68%). ¹H NMR (400 MHz, CDCl₃): δ = 7.56 (d, J = 5.0 Hz, 1H), 7.21 (t, J = 8.2 Hz, 1H), 7.16 (d, J = 5.2 Hz, 1H), 7.08 (d, J = 5.0 Hz, 1H), 6.57 (d, J = 8.2 Hz, 1H), 6.48 (d, J = 8.2 Hz, 1H), 4.94 (s, 1H, O-H); 3.66 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ = 158.4, 154.5, 132.3, 131.9, 130.7, 130.5, 130.4, 130.1, 127.3, 126.7, 111.4, 110.5, 108.4, 103.1, 55.8. HRMS (ESI, positive mode) m/z calculated for C₁₅H₁₂BrO₂S₂ [M + H]⁺: 366.9462, found: 366.9464. ε = 1.26x10⁴ M⁻¹cm⁻¹ (λ_max = 250 nm).

Compound 7: A solution of 6 (1.0 g, 2.72 mmol), 4 (1.92 g, 5.44 mmol), K₂CO₃ (1.88 g, 13.6 mmol), Pd(PPh₃)₄ (0.63 g, 0.54 mmol) and DMF (10 mL) was stirred at 95°C for 60 hrs under Argon atmosphere. The mixture was allowed to reach room temperature, diluted with ethyl acetate, transferred into a separatory funnel, and washed with water. The organic layers were collected, dried over MgSO₄, filtered and concentrated in vacuo. The crude mixture was then purified through column chromatography (R_f = 0.32, DCM/PetEther = 1:1) to afford a yellow solid (640 mg, 45%). ¹H NMR (400 MHz, CDCl₃): δ = 7.90 (d, J = 7.9 Hz, 2H), 7.62 (s, 1H), 7.61 (s, 1H), 7.29 (t, J = 7.9 Hz, 1H), 7.21 (d, J = 5.1 Hz, 1H), 7.19 (d, J = 5.1 Hz, 1H), 6.96 (d, J = 7.9 Hz, 1H), 6.85 (d, J = 4.9 Hz, 1H), 6.76 (d, J = 4.9 Hz, 1H), 6.64 (d, J = 8.1 Hz, 1H), 6.52 (d, J = 8.1 Hz, 1H), 5.22 (s, 1H, OH), 4.86 (s, 1H, OH), 3.64 (s, 3H), 2.09 (s, 6H). ¹³C NMR (101 MHz, CDCl₃): δ = 158.8, 158.3, 154.9, 152.4, 147.5, 139.4, 139.0, 138.7, 137.8, 135.0, 131.3, 130.3, 130.2, 128.8, 128.3, 126.0, 125.7, 125.1, 121.83, 121.80, 116.0, 111.9, 108.5, 103.3, 77.5, 77.2, 76.8, 55.8, 20.7, 20.6. HRMS (ESI, positive mode) m/z calculated for C₁₅H₁₂BrO₂S₂ [M + H]⁺: 366.9462, found: 366.9464. ε = 1.26x10⁴ M⁻¹cm⁻¹ (λ_max = 250 nm).

Compound 8: A solution of 7 (600 mg, 1.17 mmol), 6-bromo-1-hexene (1.14 g, 7.02 mmol), K₂CO₃ (485 mg, 3.51 mmol) and dry DMF (12 mL) was stirred at 70°C for 24 hrs. The mixture was allowed to reach room temperature, diluted with ethyl acetate, transferred into a separatory funnel, and washed with water. The organic layers were collected, dried over MgSO₄, filtered and concentrated in vacuo.

S5
The crude product was filtered through a silica pad ($R_f = 0.32$ in DCM/PetEther = 1:1; PetEther = 100% → DCM/PetEther = 1:1). The filtrate was then evaporated and the product was obtained as a yellow solid (681 mg, 86%). 1H NMR (400 MHz, CDCl$_3$): $\delta = 7.93$ (d, $J = 8.9$ Hz, 2H), 7.59 (s, 2H), 7.30 (t, $J = 8.3$, 1H), 7.14 (d, $J = 5.1$ Hz, 1H), 7.06 (d, $J = 5.2$ Hz, 1H), 7.02 (d, $J = 8.9$ Hz, 2H), 6.78 (d, $J = 5.2$ Hz, 1H), 6.71 (d, $J = 5.2$ Hz, 1H), 6.57 (d, $J = 8.3$ Hz, 1H), 6.56 (d, $J = 8.3$ Hz, 1H), 5.84 (dd, $J = 17.1$ Hz, $J = 10.4$ Hz, 1H), 5.70 (dd, $J = 17.1$ Hz, $J = 10.4$ Hz, 1H), 5.06 (d, $J = 17.1$ Hz, 1H), 5.00 (d, $J = 10.2$ Hz, 1H), 4.92 (d, $J = 17.1$ Hz, 1H), 4.90 (d, $J = 10.2$ Hz, 1H), 4.07 (t, $J = 6.4$ Hz, 2H), 3.83 (t, $J = 6.4$ Hz, 2H), 3.62 (s, 3H), 2.23-2.13 (m, 4H), 2.09 (s, 3H), 2.07 (s, 3H), 2.00-1.91 (m, 2H), 1.90-1.80 (m, 2H), 1.68-1.51 (m, 2H), 1.39-1.23 (m, 2H). 13C NMR (101 MHz, CDCl$_3$): $\delta = 161.61$, 158.84, 158.59, 152.23, 147.22, 139.28, 139.14, 139.13, 138.82, 138.59, 136.57, 133.06, 132.60, 131.35, 130.75, 129.55, 128.68, 124.75, 124.42, 123.63, 121.67, 121.59, 114.99, 114.83, 114.57, 105.41, 103.98, 77.48, 77.16, 76.84, 68.34, 68.26, 55.72, 33.56, 33.37, 28.80, 28.57, 25.45, 25.18, 20.82, 20.63. HRMS (ESI, positive mode) m/z calculated for C$_{41}$H$_{45}$N$_2$O$_3$S$_2$ [M + H]$^+$: 677.2872; found: 677.2882. $\varepsilon_{trans} = 2.67 \times 10^4$ M$^{-1}$cm$^{-1}$ ($\lambda_{max} = 358$ nm).

NOTE: Typical batches of this product result in only trans isomer. However, on some occasion presence of the cis form is observed. The later isomer is converted to its trans counterpart by thermal relaxation.

Compound 1.trans: A solution of 8 (100.0 mg, 0.15 mmol) and 2nd Generation Grubbs catalyst (25 mg, 0.03 mmol) in toluene (1 L) was stirred at 50°C for 18 hrs. After cooling to RT, the reaction mixture was filtered through a short silica plug to remove the catalyst. The filtrate was then concentrated under reduced pressure and the product was purified by column chromatography ($R_f = 0.58$, DCM/PetEther = 7:3) followed by precipitation from methanol. The desired product 1.trans was obtained as a yellow solid (37 mg, 38%). 1H NMR (400 MHz, THF-d$_8$): $\delta = 7.90$ (d, $J = 8.9$ Hz, 2H), 7.47 (d, $J = 5.2$ Hz, 1H), 7.36 (s, 1H), 7.24 (d, $J = 5.2$ Hz, 1H), 7.20 (s, 1H), 7.10 (t, $J = 8.3$ Hz, 1H), 7.06 (d, $J = 8.9$ Hz, 2H), 6.81 (d, $J = 5.2$ Hz, 1H), 6.67 (d, $J = 5.2$ Hz, 1H), 6.36 (d, $J = 8.3$ Hz, 1H), 6.28 (d, $J = 8.3$ Hz, 1H), 4.90 (m, 2H), 4.32 (t, $J = 4.9$ Hz, 2H), 3.43 (s, 3H), 3.33 – 3.23 (m, 1H), 3.15 – 3.06 (m, 1H), 1.95 – 1.85 (m, 2H), 1.92 (s, 3H), 1.63 – 1.43 (m, 6H), 1.41 (s, 3H), 1.27 – 1.01 (m, 2H), 0.81 – 0.54 (m, 2H). 13C NMR (101 MHz, THF-d$_8$): $\delta = 160.5$, 158.7, 158.1, 151.8, 147.9, 139.4, 138.7, 138.5, 138.2, 134.7, 133.9, 132.7, 132.6, 131.5, 131.4, 130.0, 129.4, 128.9, 125.8, 124.8, 124.1, 122.3, 121.1, 118.0, 115.3, 113.9, 104.3, 103.8, 68.2, 67.8, 55.1, 33.3, 31.5, 29.6, 26.0, 25.6, 23.9, 21.1, 20.3. HRMS (ESI, positive mode) m/z calculated for C$_{39}$H$_{41}$N$_2$O$_3$S$_2$ [M + H]$^+$: 649.2553; found: 649.2447. $\varepsilon = 2.60 \times 10^4$ M$^{-1}$cm$^{-1}$ ($\lambda_{max} = 363$ nm).

Compound 1.cis (obtained by irradiating with 350nm light; ~14% of residual 1.trans): 1H NMR (400 MHz, THF-d$_8$): $\delta = 7.27$ (t, $J = 8.4$ Hz, 1H), 7.11 (d, $J = 5.2$ Hz, 1H), 7.11 (d, $J = 5.0$ Hz, 1H), 6.88-6.79 (m, 5H), 6.70 (d, $J = 5.2$ Hz, 1H), 6.69 (d, $J = 8.3$ Hz, 1H), 6.66 (d, $J = 5.0$ Hz, 1H), 6.58 (d, $J = 8.3$ Hz, 1H), 6.06 (s, 1H), 5.35 (m, 2H), 4.07 – 3.97 (m, 3H), 3.93-3.85 (m, 1H), 3.51 (s, 3H), 2.08 – 1.94 (m, 2H), 2.01 (s, 3H), 1.93 – 1.84 (m, 2H), 1.87 (s, 3H), 1.83 – 1.70 (m, 2H), 1.65 (m, 4H), 1.38 – 1.27 (m, 2H). 13C NMR (101 MHz, THF-d$_8$): $\delta = 159.8$, 159.3, 158.7, 156.7, 149.1, 139.7, 139.6, 136.5, 135.4, 134.1, 133.1, 131.9, 131.50, 131.4, 131.3, 130.2, 130.1, 128.3, 124.5, 123.36, 123.36 123.2, 120.9, 134.1, 133.1, 131.9, 131.50, 131.4, 131.3, 130.2, 130.1, 128.3, 124.5, 123.36, 123.36 123.2, 120.9.
Supporting Information

116.7, 114.61, 114.61, 106.1, 104.7, 68.8, 68.3, 55.3, 32.8, 32.7, 29.5, 29.2, 27.1, 27.0, 20.5, 20.4. $\varepsilon = 6.08 \times 10^5 \text{ M}^{-1}\text{cm}^{-1} (\lambda_{\text{max}} = 363 \text{ nm})$.

\[\begin{array}{c}
\text{AB.OH} \\
\text{AB.Hex}
\end{array}\]

Scheme S1: Synthetic scheme for the preparation of the photochromic torsional switches AB. (a) NaNO$_2$/HCl, phenol, water; (b) 6-bromo-1-hexene, K$_2$CO$_3$, DMF.

Compound AB.OH: This compound was synthesized as reported for compound 3. Concentrated hydrochloric acid (2 mL) was added to a suspension of 3,5-dimethylaniline (1.0 g, 5.0 mmol) in water (20 mL). The mixture was cooled to 5 °C in an ice bath and stirred vigorously. A solution of NaNO$_2$ (0.38 g, 5.5 mmol) in water (3 ml) was then added dropwise to the cooled suspension, and the mixture was stirred for 1h. In a separate flask, NaOH 5M (5 ml) was added to a solution of phenol (0.56 g, 6.0 mmol) in water (2 mL), and cooled to 0 °C. The former mixture was then slowly transferred to the solution of phenol and vigorously stirred for 1h at 0 °C (pH = 2). The resultant precipitate was filtered. The filtrate was cooled to 5 °C in an ice bath and transferred to a new solution of phenol (0.56 g, 6.0 mmol) in water (2 mL) and NaOH 5M (5 ml) to obtain additional precipitate. The mixture was stirred for 1.5h at 0 °C (pH = 9). The obtained precipitate was filtered. The combined precipitates were purified by silica chromatography ($R_f = 0.43$, Heptane/ Ethyl Acetate 8:2) to give a bright yellow powder (1.16 g, 76%). 1H-NMR (400 MHz, CDCl$_3$): $\delta = 7.86 \text{ (d, } J = 8.8 \text{ Hz, 2H), } 7.49 \text{ (s, 2H), } 7.09 \text{ (s, 1H), } 6.94 \text{ (d, } J = 8.8 \text{ Hz, 2H), } 5.28 \text{ (s, 1H, OH), } 2.41 \text{ (s, 6H).}$ 13C NMR (101 MHz, CD$_3$Cl): $\delta = 158.2, 153.0, 147.1, 138.8, 138.6, 132.2, 124.8, 120.5, 115.9, 21.4$. HRMS (ESI, positive mode) m/z calculated for C$_{14}$H$_{15}$N$_2$O [M + H]$^+$: 227.1174; found: 227.1179. $\varepsilon_{\text{trans}} = 2.42 \times 10^4 \text{ M}^{-1}\text{cm}^{-1} (\lambda_{\text{max}} = 358 \text{ nm})$.

Compound AB.Hex: A solution of AB.OH (100 mg, 0.44 mmol), 6-bromo-1-hexene (216.2 mg, 1.32 mmol), K$_2$CO$_3$ (91.4 mg, 0.66 mmol) and dry DMF (1 mL) was stirred at 70°C for 24 hrs. The mixture was allowed to reach room temperature, diluted with ethyl acetate, transferred in a separatory funnel, and washed with water. The organic layers were collected, dried over MgSO$_4$, filtered and concentrated in vacuo. The crude product was filtered through a silica pad ($R_f = 0.43$ in PET/EtOAc = 9.5 : 0.5; PET = 100% → PET/EtOAc = 9.5 : 0.5). The filtrate was then evaporated and the product was obtained as a yellow solid (120 mg, 88%). 1H NMR (400 MHz, CDCl$_3$) (trans): $\delta = 7.89 \text{ (d, } J = 7.9 \text{ Hz, 2H), } 7.49 \text{ (s, 2H), } 7.08 \text{ (s, 1H), } 6.99 \text{ (d, } J = 7.9 \text{ Hz, 2H), } 5.84 \text{ (dd, } J = 16.7, 8.9 \text{ Hz, 1H), } 5.05 \text{ (d, } J = 17.0 \text{ Hz, 1H), } 4.99 \text{ (d, } J = 9.8 \text{ Hz, 1H), } 4.05 \text{ (t, } J = 6.0 \text{ Hz, 2H), } 2.41 \text{ (s, 6H), } 2.21 - 2.07 \text{ (m, 2H), } 1.91 - 1.76 \text{ (m, 2H), } 1.67 - 1.50 \text{ (m, 2H).}$ 13C NMR (101 MHz, CDCl$_3$): $\delta = 161.6, 153.1, 147.1, 138.8, 138.6, 132.2, 124.8,
120.5, 115.0, 114.8, 68.2, 33.6, 28.8, 25.4, 21.4. HRMS (ESI, positive mode) m/z calculated for C_{20}H_{25}N_{2}O [M + H]^+: 309.1961; found: 309.1954. \(\varepsilon_{\text{trans}} = 2.61 \times 10^4 \text{ M}^{-1} \text{cm}^{-1} \) (\(\lambda_{\text{max}} = 357 \text{ nm} \)).
2.2. 1H-NMR spectra of 1 and related molecules

Compound 3:

![H-NMR Spectrum of Compound 3](image)

Compound 4:

![H-NMR Spectrum of Compound 4](image)
Supporting Information

Compound 7:

Compound 8:
Supporting Information

Compound 1.\textit{trans}:

Compound 1.\textit{cis} (upon 350 nm for 1h):

S12
Supporting Information

Compound AB:OH:

Compound AB.Hex:
2.2. 13C-NMR spectra of 1 and related molecules

Compound 3:

Compound 4:
Supporting Information

Compound 1.trans:

![Diagram of Compound 1. trans](image1)

Compound 1.cis (upon 350 nm for 1h):

![Diagram of Compound 1. cis](image2)
Supporting Information

Compound AB.OH:

Compound AB.Hex:
2.3. 1H-NMR Spectra: trans-to-cis isomerization and PSS of 1

1H-NMR spectroscopy shows that when 1.trans is exposed to 350nm light, ~86% of 1.trans is converted to 1.cis. This process can be inverted by irradiating 1.cis with 254nm light to reach the photostationary state consisting ~55% of 1.trans and ~45% of 1.cis.

After irradiation with 254nm wavelength no evidence of isomerization of the olefin double bond is observed. The retention of the cis configuration of the olefinic protons was confirmed by NOESY experiments.

Determination of the cis conformation was also assessed by the retention of the same J coupling constant on azobenzene isomerization. The J values measured before and after the irradiation with 350 nm and 254 nm wavelength is 3.3Hz, which is lower than what generally expected for cis isomer (6-15Hz). However, it has to be noticed that this low J value could be given either by the torsion tension induced by the macrocycle or by a partial overlap of the doublet of triplet expected by the olefinic protons. Thus, we decided to not to determine any specific structure of the peak and rather define it as a multiplet.

Figure S1: 1H-NMR spectrum of compound 1 in tetrahydrofuran-d8. Before (top), after (middle) 1 h of irradiation at 350 nm, and after (bottom) 1 h of irradiation at 254 nm.

Section 3: Computations of the molecular structures

3.1 Replica-Exchange Molecular Dynamic simulations (REMD)

The dynamic simulations were performed using the i-PI driver\(^6\) in the NVT ensemble with REMD@DFTB\(^7\) for 100,000 steps. A time step of 0.25 fs ensured the stability of the dynamics at all temperatures, ranging from 300K (the target temperature) to the highest 1200K over 32 replicas that are allowed to exchange configurations every 50 steps. The GLE thermostat\(^8,9\) ensures an optimal mapping of the phase space. Forces are provided to i-PI from the DFTB+ software at the DFTB3/3OB\(^10,11\) level together with the UFF force field accounting for London dispersion.\(^12\)

3.2 Static computations

Geometries of the most relevant (low-lying) conformations of PTS \(1.\text{cis}\) and \(1.\text{trans}\) were extracted from the REMD simulations prior to static optimization at the PBE0-dDsC\(^13\)/def2SVP level using the development version of Q-Chem.\(^14\)
Section 4: Steady-state Spectroscopy

4.1 Absorption Spectra

Figure S2: Absorption spectrum of $1.\text{trans}$, $8.\text{cis}$, $\text{AB.Hex}.\text{trans}$, $\text{AB.Hex}.\text{cis}$, and 5 in THF solution.

Figure S3: Absorption spectrum of $8.\text{trans}$ and $8.\text{cis}$ in THF solution.
4.2 Cyclability

A dilute solution of 1 (∼1 x 10^{-4} M) in THF was placed ~3.5 cm from the light source and irradiated with repeated alternating cycles of 1 min with 350 nm and 254 nm wavelengths (each 6 W).

4.3 Thermal relaxation

Dilute solutions of 1.trans, 8.trans and AB.Hex.trans (∼1 x 10^{-4} M) in THF were irradiated with 350 nm wavelengths (∼1 min) to isomerize into the corresponding cis form. The solutions were then stored at 25°C in the dark, and absorption spectra measured every 12 h.

It was observed that compounds 8.cis and AB.Hex.cis have respectively a half-life (τ_{1/2}) of ~12 h and ~16h as expected for alkoxy-azobenzene derivatives. Contrarily, 1.cis exhibits a slower thermal relaxation with a τ_{1/2} = 120 h. Given the fact that the intrinsic properties of the azobenzene in 1, 8 and AB.Hex should be comparable, the slow thermal relaxation of 1.cis can be associated to a reduced degree of freedom in the isomerization motion. Further investigations are currently ongoing to get a deeper understanding into the dynamics of this process.

![Figure S4](image-url)
Figure S4: Measured absorbance at the corresponding λ_{max} of 1, 8, and AB.Hex in THF solution during the thermal relaxation. Dashed lines indicate the corresponding absorbance intensity at the observed half-life.
Section 5: Time Dependent Density Functional Theory (TDDFT) calculations

5.1 Computed absorption spectra

Excited states and electronic vertical transitions were evaluated at the TDDFT level of theory \((\omega B96XD/6-311+G**)\), on top of the lowest-energy structures as derived from the REMD//DFTB study (see Section 3). Figure S5 reports the oscillator strengths and absorption spectra (as obtained from a convolution of Lorentzian functions peaked on each vertical transition, FWHM = 0.3 eV), for 1.cis and 1.trans. TDDFT calculations, with the use of range-separated functionals, tend to overestimate the transitions energies.\(^{15,16}\) Although in the current calculations we do not take into account the vibronic relaxations and spectral broadening effects,\(^{17}\) the computed transition energies and band intensity ratio are consistent and in good agreement with the experimental findings. All calculations were performed in vacuum; small effects on the vertical transition energies are expected to occur with the inclusion of explicit or implicit solvent.

![Calculated absorption spectra of 1.cis and 1.trans](image)

Figure S5. TDDFT \((\omega B97XD/6-311+G**)\) vertical transitions for 1.cis (green) and 1.trans (blue). Relevant excited states identified for the spectroscopic assignments (see manuscript) are reported. (a) Calculated absorption spectra of 1.cis (green) and 1.trans (blue); (b) Absorption spectra of 1.trans calculated (blue solid) and measured in THF solution (blue dashed); (c) Absorption spectra of 1.cis calculated (green solid) and measured in THF solution (green dashed). (*) Residual signature of 1.trans (~14%).

\(^{15}\) ‘TD-DFT benchmarks: A review’ A. D. Laurent; D. Jacquemin, Int. J. Quantum Chem., 2013, **113**, 2019–2039
\(^{17}\) ‘Spectrum simulation and decomposition with nuclear ensemble: formal derivation and application to benzene, furan and 2-phenylfuran’ R. Crespo-Otero and M. Barbatti, Theor. Chem. Acc., 2012, **131**, 1237

5.2 Excited states assignments: MOs picture

As discussed in the manuscript, the conformational changes of the bithiophene unit, as induced by the trans-cis azobenzene isomerization, can be traced by monitoring the energy shift of the electronic
transition that shows a large molecular orbital contribution localized on the thiophene segments. In the
tables below we report the assignments, based on a molecular orbitals (MOs) of each electronic
transition discussed in the manuscript. Only the relevant MOs contributions for each electronic
transition are shown. The red entry represents the excitation mainly localized on the thiophene units,
while the blue represents the transition mainly localized on the phenyls of the azobenzene moiety. For 1.trans
the electronic transition localized on the thiophene units is the $S_0 \rightarrow S_4$ (4.34 eV, 285 nm), while
for 1.cis is the $S_0 \rightarrow S_2$ (4.03 eV, 307 nm). Upon trans-to-cis azobenzene isomerization, the computed
band shift is 22 nm, which is in close agreement with the observed bathochromic shift of 13 nm.

<table>
<thead>
<tr>
<th>energy</th>
<th>oscillator strength</th>
<th>MO contributions</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S_0 \rightarrow S_1$</td>
<td>2.6452 eV (468.71 nm)</td>
<td>$f = 0.0249$</td>
</tr>
<tr>
<td>$S_0 \rightarrow S_2$</td>
<td>3.5753 eV (346.78 nm)</td>
<td>$f = 0.7630$</td>
</tr>
<tr>
<td>$S_0 \rightarrow S_3$</td>
<td>4.0396 eV (306.92 nm)</td>
<td>$f = 0.0245$</td>
</tr>
<tr>
<td>$S_0 \rightarrow S_4$</td>
<td>4.3410 eV (285.61 nm)</td>
<td>$f = 0.1579$</td>
</tr>
<tr>
<td>$S_0 \rightarrow S^*$</td>
<td>5.5058 eV (225.19 nm)</td>
<td>$f = 0.1633$</td>
</tr>
</tbody>
</table>
Electronic Transition - Molecular Orbitals 1.cis

<table>
<thead>
<tr>
<th>Energy</th>
<th>Oscillator Strength</th>
<th>MO Contributions</th>
</tr>
</thead>
</table>
| $S_0 \rightarrow S_1$ | 2.6927 eV (460.44 nm) | $f = 0.0280$ | $H \rightarrow L$
$H-1 \rightarrow L$ |
| $S_0 \rightarrow S_2$ | 4.0375 eV (307.09 nm) | $f = 0.1398$ | $H-1 \rightarrow L+1$
$H \rightarrow L+1$
$H \rightarrow L$ |
| $S_0 \rightarrow S_3$ | 4.2624 eV (290.88 nm) | $f = 0.1532$ | $H-4 \rightarrow L$
$H-1 \rightarrow L$
$H-6 \rightarrow L$
$H-7 \rightarrow L$ |
| $S_0 \rightarrow S_4$ | 4.5462 eV (272.72 nm) | $f = 0.1004$ | $H-4 \rightarrow L$
$H-5 \rightarrow L$
$H-3 \rightarrow L$ |
| $S_0 \rightarrow S^*$ | 5.3706 eV (230.86 nm) | $f = 0.1413$ | $H \rightarrow L+2$ |