Catalyst Displacement Assay: A Supramolecular Approach for Design of Smart Latent Catalysts for Pollutant Monitoring and Removal

Supporting information

[a] Department of Science and Environmental Studies, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po Hong Kong SAR, China and College of Chemistry and Chemical Engineering, Southwest University, Chong Qing, China.

[b] Centre for Education in Environmental Sustainability, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, Hong Kong SAR, China.

[c] Institute of Natural Medicine and Green Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P.R. China.

E-mail: cfchow@ied.edu.hk; Fax: (+852) 29487676; Tel: (+852) 29487671
SI.Figure 1. (a) Spectroscopic titrations of $K_4[\text{Fe}^{II}(\text{CN})_6]$ (3.3 \times 10$^{-4}$ M) by $\text{Cu}^{II}(\text{dien})\text{Cl}_2$ (0 to 2 \times 10$^{-5}$ M) (b) The slope and y-intercept are -1.77 \times 10$^{-10}$ M and -7.79 respectively of the best fitted $A_0/(A-A_0)$ versus $1/[[\text{Cu}^{II}(\text{dien})\text{Cl}_2]]^2$ plot with log $K = 5.32 \pm 0.008$ at 422 nm. From fitting the curve with the ratio 1:2 Benesi-Hildebrand equation, the solvated form of the complex is deduced as 1:2 ratio of $[\text{Fe}^{II}:\text{Cu}^{II}]$. All the titrations were performed in HEPES buffer at pH 7.4 at 298 K.
Figure 2. (a) Spectroscopic titrations of K$_2$[FeII(Bubpy)(CN)$_4$] (5 x 10$^{-5}$ M) by CuII(dien)Cl$_2$ (0 to 2 x 10$^{-4}$ M) (b) The slope and y-intercept are 3.80 x 10$^{-9}$ M and 2.88 respectively of the best fitted $A_o/(A-A_o)$ versus $1/[[Cu^{II}$(dien)Cl$_2$]2 plot with log $K = 4.44 \pm 0.001$ at 487 nm. From fitting the curve with the ratio 1:2 Benesi-Hildebrand equation, the solvated form of the complex is deduced as 1:2 ratio of [FeII:CuII]. All the titrations were performed in aqueous DMF (1:1 v/v) (1.50 mL of aqueous HEPES buffer at pH 7.4 + 1.50 mL of DMF) at 298 K.
SI.Figure 3. (a) Spectroscopic titrations of Fe^{II}(Bubpy)_2(CN)_2 (5 \times 10^{-5} \text{ M}) by Cu^{II}(dien)Cl_2 (0 to 1 \times 10^{-4} \text{ M}) (b) The slope and y-intercept are -3.07 \times 10^{-2} \text{ M} and 6.51 \times 10^{-1} \text{ respectively of the best fitted } A_o/(A-A_o) \text{ versus } 1/\{\text{[Cu}^{II}(\text{dien})\text{Cl}_2]^{0.5}\} \text{ plot with } \log K = 2.65 \pm 0.001 \text{ at } 561 \text{ nm. From fitting the curve with the ratio 0.5:1 Benesi-Hildebrand equation, the solvated form of the complex is deduced as 0.5:1 ratio of [Fe}^{II}:\text{Cu}^{II}]. All the titrations were performed in aqueous DMF (1:1 v/v) (1.50 mL of aqueous HEPES buffer at pH 7.4 + 1.50 mL of DMF) at 298 K.
SI.Figure 4. Electrospray mass spectra of (a) “complex 1 / 2 or 3-cyanide-mixture” and (inset) the simulation of $[\text{Cu}^{II}(\text{dien})(\text{CN})]^+$ (m/z 192.0); and (b) “complex 1/ 2 or 3-oxalate-mixture” and (inset) the simulation of $[\text{Cu}^{II}(\text{dien})(\text{OOC–COO})(\text{K})]^+$ (m/z 293.0). The mass spectra were performed in aqueous methanol.
SI. Figure 5. Kinetic plot of apparent association rate constant k_{obs} (s$^{-1}$) versus Cu$^{2+}$ concentration. The rate constant value was calculated from the slope (249.5 M$^{-1}$s$^{-1}$) of the curve ($y = mx$). All the k_{obs} data were retrieved from Sarla, M.; Pandit, M.; Tyagi, D. K.; Kapoor, J. C. J. Hazard. Mater. 2004, B116, 49-56.
SI.Figure 6. (a) UV–vis spectroscopic titrations of $\text{Cu}^\text{II}(\text{dien})\text{Cl}_2$ (5×10^{-4} M) with oxalate (0 to 1×10^{-3} M). (b) The slope and y-intercept are -8.95×10^{-7} M and -6.25×10^{-1} respectively of the best fitted $A_0/(A-A_0)$ versus $1/[\text{oxalate}]^2$ plot with log $K = 6.84 \pm 0.002$ at 600 nm. All titrations were carried out in aqueous phosphate buffer pH 4 at 298 K.
SI. Figure 7. Formation of CO$_2$ with respect to different initial concentration of oxalate in the presence of complex 1 (6.25×10^{-4} M) against time. The formation of CO$_2$ in the absence of catalyst (○). All the experiments were performed with H$_2$O$_2$ (0.4 M) and pH 3 at room temperature and UV-vis irradiation under an open atmosphere.
SI. Figure 8. Conversion of cyanide to cyanate in real sample of (a) domestic wastewater (level I, untreated) and (b) industrial wastewater by 3 (2.0 × 10^{-4} M) in the presence of H_2O_2 (6.53 × 10^{-4} M) and spiked with (■) 10 μM, (●) 20 μM and (▲) 30 μM of cyanide. Control experiments (▼) were run in the absence of 3, but in presence of H_2O_2 (6.53 × 10^{-4} M) and spiked with 10 μM cyanide.
SI. Figure 9. Full range ESI-MS spectra of complexes 1-3. All the experiments were conducted in DI water/methanol.