
A more advanced YaSoFo example

(Done with YaSoFo v1.0)
In this example, you will learn how to do a series of calculations with YaSoFo, varying one parameter.

The system will be a double junction cell under AM1.5G illumination, with a very good catalyst and intended
for water splitting. The parameter, that we change, is the ohmic resistivity. At the end, we will plot the
results.

Prerequisites: You have installed SciPy (Python 3.x version) on your computer and obtained YaSoFo
from https://bitbucket.org/YaSoFo/yasofo . You have started a Python shell such as ipython in the directory
where the files yasofo.py and am15g.dat are located.

In [9]: %matplotlib inline # remove this line if you want your plots in a separate window

import yasofo as yo

We can check if things are working by plotting the AM1.5G spectrum:

In [10]: yo.plot_spectrum()

Okay, that works. So let us plot the possible bandgap combinations for a double junction cell with the
resulting efficiencies for solar water splitting. By not specifying any parameters, the standard settings are
used, i.e. AM1.5G, IrO2 as a catalyst, no ohmic drop, 400 mV photovoltage loss per junction.

In [14]: double_junction = yo.best_gaps_double()

1

http://scipy.org/

These are the standard plotting settings. If you want to control the settings for your plot, have a look
at the matplotlib documentation. The computed data is stored in the variable ‘double junction’, we just
created. Let’s say we want to study the impact of an ohmic drop from 0 to 25 Ohm in steps of 5 Ohm. We
first create an array with the corresponding values:

In [20]: import numpy as np

ohmic_drop = np.arange(0, 25.1, 5)

print(ohmic_drop)

[0. 5. 10. 15. 20. 25.]

Above you see the values for the ohmic drop that will be tested. Now here the actual calculation, together
with plotting:

In [22]: import math

import matplotlib.pyplot as plt

nrows = int(math.ceil(len(ohmic_drop) / 2.))

efficiencies = []

for drop in ohmic_drop:

efficiencies.append(yo.best_gaps_double(cat_para=[yo.IrO2[0], yo.IrO2[1], drop],

plotting=False))

now we have the data, lets plot it nicely

fig, axes = plt.subplots(nrows, ncols=2, figsize=(8, 12))

for ax, efficiency, drop in zip(axes.flat, efficiencies, ohmic_drop):

we’re setting the colour scale to be the same for all, i.e. first dataset

p = ax.pcolor(efficiency[0],efficiency[0],efficiency[1]*1000, cmap=plt.cm.jet,

vmin=abs(efficiencies[0][1]*1000).min(),

vmax=abs(efficiencies[0][1]*1000).max())

ax.set_xlabel("Bottom cell bandgap / eV")

ax.set_ylabel("Top cell bandgap / eV")

ax.set_title("Ohmic drop %.1f Ohm" %drop)

plt.tight_layout()

cb = plt.colorbar(p)

cb.set_label("STF / %")

plt.show(p)

2

http://matplotlib.org/2.0.0/index.html

So we see that the max. efficiency is constantly decreasing with solution resistance. Not so surprising. . .
Such a looping can be done with any kind of parameter in the model.

3

