ELECTRONIC SUPPLEMENTARY INFORMATION (ESI)

Reversible Wrinkles of Monolayer Graphene on a Polymer Substrate: Toward Stretchable and Flexible Electronics

Ying Li
Department of Mechanical Engineering & Institute of Materials Science, University of Connecticut, Storrs, CT, USA
E-mail: yingli@engr.uconn.edu
Figure S1. Stress-strain curve of the crosslinked polymer substrate under equal-biaxial tension. The strain rate is about $2 \times 10^{-5}\tau^{-1}$.

Figure S2. Energy change of monolayer graphene supported by a rigid substrate under equal-biaxial compression. The change of bond energy represents the in-plane stretching energy change. While the bending energy change is denoted by the change of angle and dihedral energies.
Figure S3. Snapshots of monolayer graphene supported by a pre-strained soft (polymer) substrate. The marked strain represents the strain level within polymer substrate. The coarse-grained carbon atoms are colored according to their out-of-plane (z direction) displacement. Interaction between graphene and polymer substrate is determined by the pair parameter $\epsilon_{GS} = 1.0$.

Video 1.mp4: Monolayer graphene supported by a rigid (non-deformable) substrate under equal-biaxial compression. Interaction between graphene and rigid substrate is determined by the pair parameter $\epsilon_{wall} = 5.0$.

Video 2.mp4: Monolayer graphene supported by a soft (polymer) substrate under equal-biaxial compression. Interaction between graphene and polymer substrate is determined by the pair parameter $\epsilon_{GS} = 5.0$.

Video 3.mp4: Monolayer graphene supported by a pre-strained polymer substrate during relaxation of pre-strain within substrate. Interaction between graphene and polymer substrate is determined by the pair parameter $\epsilon_{GS} = 10$.

Video 4.mp4: Monolayer graphene supported by a pre-strained polymer substrate during equal-biaxial stretching of substrate. Interaction between graphene and polymer substrate is determined by the pair parameter $\epsilon_{GS} = 10$.