Figure S1: Atom notations and molecular structures of the studied IL cation and anions. Colour scheme: C, cyan; N, blue; O, red; F, pink; H, white.
Figure S2: Center-of-mass distribution of the cation imidazolium rings around a central cation in (a) [emim][Ac]- (b) [emim][Tfa]- and (c) [emim][BF$_4$]/water binary mixtures at different mole fractions of water (X_w). Insets highlight the effect of water addition on the pre-peak at 4 Å, which is an indicator of the ring stacking behavior of the cation headgroups in the three binary mixtures.
Figure S3: Center-of-mass distribution of the –CF₃ moeity of [Tfa] anion around the cation imidazolium head group in [emim][Tfa]/water binary mixtures at different X_w.
Figure S4: Site-site RDFs of water around cation imidazolium ring carbons C2, C4 and C5, respectively in the binary mixtures of (a-c) [emim][Ac], (d-f) [emim][Tfa] and (g-i) [emim][BF$_4$] at different X_w. For atom notations see Figure S1.
Figure S5: Magnified illustrations of anion-water wires at $X_w = 0.5$ in (a) [emim][Ac]-, (b) [emim][Tfa]- and (c) [emim][BF₄]/water mixtures depict the different hydrogen bonding patterns in the three systems. Compare the continuous, long, uninterrupted anion-water wires (blue dashes) in [emim][Ac] with shorter anion-water wires in [emim][Tfa] and anion-water wires interspersed with water-water hydrogen bonds (green dashes) in [emim][BF₄]. Color scheme for molecules: grey: anion, red: water. Anion H's are omitted for clarity. See Figure 6 in main text for complete details.
Figure S6: Number of water-water hydrogen bonds formed per molecules of water in different IL/water binary mixtures as a function of X_w.
Figure S7: Size distribution of water aggregates formed in (a) [emim][Ac]-, (b) [emim][Tfa]- and [emim][BF₄]/water binary mixtures at water concentrations of $X_w = 0.7$ (left panel), 0.8 (middle panel) and 0.9 (right panel). At a very high dilution of $X_w = 0.9$, all the water molecules (4608 water, see Table 1 for composition of simulated systems) belong to a single mutually hydrogen bonded water network, resulting in a single peak in the water cluster distribution.
Table S1: Fit parameters of the water-water hydrogen bond time correlation function for representative IL/water binary mixtures. The τ_{avg} values indicate 2-3 orders of magnitude slower re-organization of H-bonds in these mixtures compared to bulk water.

<table>
<thead>
<tr>
<th>IL</th>
<th>X_w</th>
<th>c_1</th>
<th>τ_1</th>
<th>c_2</th>
<th>τ_2</th>
<th>c_3</th>
<th>τ_3</th>
<th>c_4</th>
<th>τ_4</th>
<th>τ_{avg}</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Ac]</td>
<td>0.3</td>
<td>0.23</td>
<td>1.65</td>
<td>0.001</td>
<td>42.68</td>
<td>0.73</td>
<td>688.79</td>
<td>0.04</td>
<td>13018.05</td>
<td>1023.96</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>0.18</td>
<td>2.35</td>
<td>0.08</td>
<td>75.43</td>
<td>0.34</td>
<td>821.73</td>
<td>0.40</td>
<td>12070.44</td>
<td>5114.02</td>
</tr>
<tr>
<td></td>
<td>0.9</td>
<td>0.37</td>
<td>1.43</td>
<td>0.54</td>
<td>13.53</td>
<td>0.09</td>
<td>73.65</td>
<td>-</td>
<td>-</td>
<td>14.46</td>
</tr>
<tr>
<td>[Tfa]</td>
<td>0.3</td>
<td>0.11</td>
<td>1.13</td>
<td>0.11</td>
<td>7.91</td>
<td>0.39</td>
<td>176.11</td>
<td>0.39</td>
<td>2808.37</td>
<td>1164.94</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>0.21</td>
<td>2.48</td>
<td>0.15</td>
<td>39.97</td>
<td>0.39</td>
<td>202.28</td>
<td>0.26</td>
<td>1168.85</td>
<td>389.31</td>
</tr>
<tr>
<td></td>
<td>0.9</td>
<td>0.42</td>
<td>1.27</td>
<td>0.52</td>
<td>9.07</td>
<td>0.06</td>
<td>57.32</td>
<td>-</td>
<td>-</td>
<td>8.69</td>
</tr>
<tr>
<td>[BF₄]</td>
<td>0.3</td>
<td>0.16</td>
<td>1.11</td>
<td>0.25</td>
<td>14.74</td>
<td>0.41</td>
<td>86.77</td>
<td>0.17</td>
<td>533.32</td>
<td>130.10</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>0.30</td>
<td>3.15</td>
<td>0.55</td>
<td>41.45</td>
<td>0.13</td>
<td>257.52</td>
<td>-</td>
<td>-</td>
<td>57.22</td>
</tr>
<tr>
<td></td>
<td>0.9</td>
<td>0.41</td>
<td>1.17</td>
<td>0.53</td>
<td>6.88</td>
<td>0.06</td>
<td>39.65</td>
<td>-</td>
<td>-</td>
<td>6.51</td>
</tr>
</tbody>
</table>