Electronic Supplementary Information

Dually cross-linked single network poly(acrylic acid) hydrogels with superior mechanical properties

Ming Zhong, Yi-Tao Liu, Xiao-Ying Liu, Fu-Kuan Shi, Li-Qin Zhang, Meifang Zhu and Xu-Ming Xie*

*Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.

E-mail: xxm-dce@mail.tsinghua.edu.cn
Fig. S1 Influence of (a) Bis, and (b) Fe$^{3+}$ contents on the initial modulus and fracture toughness of the d-PAA gels.

Fig. S2 Influence of Fe$^{3+}$ content on the macromolecular weight of the i-PAA gels.

First, the i-PAA gels (free of Bis) were added to a certain amount of chelating agent solution, ethylene diamine tetraacetic acid (EDTA), and stirred at room temperature till the i-PAA gels were dissolved completely. After that the solution was dialyzed for 1 week in order to remove the Fe$^{3+}$ ions and chelating agent. Linear PAA was separated from the solution by neutralization with NaOH and then by precipitation with methanol. The viscosity measurements were performed by a standard Ubbelhode viscometer, in 0.1 mol L$^{-1}$ NaBr solution, at 25 °C and pH = 7. The viscous average molecular weight (M_n) of PAA from the i-PAA gels was measured and calculated, according to the Mark-Houwink-Sakurada equation:

$$[\eta] = k M_n^\alpha$$

We used Francois relation1: $K = 3.12 \times 10^{-5} L g^{-1}$, $\alpha = 0.755$, $[\eta] = 3.12 \times 10^{-5} M_n^{0.755}$ (g mL$^{-1}$).
Fig. S3 Influence of water content on the modulus and toughness of the d-PAA gels.

Fig. S4 Influence of Bis content on the storage modulus of the d-PAA gels

Fig. S5 Typical stress–strain curves of the self-healed d-PAA gels ($\text{Fe}^{3+} = 0.5$ mol%, Bis = 0.05 wt%, $\text{H}_2\text{O} = 80$ wt%) with (a) temperature and (b) time as a function.
Fig. S6 Typical stress–strain curves of the self-healed d-PAA gels (Fe$^{3+}$ = 0.5 mol%, Bis = 0.05 wt%) with different water contents.

Fig. S7 Typical stress–strain curves of the self-healed d-PAA gels (Fe$^{3+}$ = 0.5 mol%, Bis = 0.05 wt%, H$_2$O = 70 wt%) with time as a function.

Notes and references