Control deposition of colloidal nanoparticles suspension in evaporating drops using laser radiation

Van Duong Taa,\,*, Richard M. Cartera, Emre Esenturkb, Colm Connaughtonb,c, Jonathan Stringerd, Patrick J. Smithd, Thomas J. Wasleyc, Ji Lic, Robert W. Kayc, Jonathan D. Shepharda

aInstitute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK

bWarwick Mathematics Institute, Zeeman Building, University of Warwick, Coventry CV4 7AL, UK

cCentre for Complexity Science, Zeeman Building, University of Warwick, Coventry CV4 7AL, UK

dLaboratory of Applied Inkjet Printing, Department of Mechanical Engineering, University of Sheffield, Sheffield, S1 4BJ, UK

eAdditive Manufacturing Research Group, Loughborough University, Leicestershire, LE11 3TU, UK

\,*Corresponding Author, Email address: d.ta@hw.ac.uk
Fig. S1 3D profile of the “coffee-stain” obtained when ~5 µL-droplet is left to dry under ambient conditions and without external radiation.

Fig. S2 3D profile of the reverse of the coffee-stain obtained when ~5 µL-droplet is irradiated with a laser beam at droplet’s centre. Laser power density was 151 W/cm² and laser diameter was 0.43 mm.
Fig. S3 3D profile of the formation pattern obtained when ~5 µL-droplet is irradiated with a laser beam at droplet’s centre. Laser power density was 47 W/cm2 and laser diameter is ~ 22% of initial droplet size (~3.5 mm).

Fig. S4 Optical images of formation pattern under ambient conditions without and with external radiation. (a) Without laser irradiation. (b) and (c) Under laser irradiation with laser diameters of ~0.49 mm and ~0.67 mm, respectively. The laser power is 220 mW. All droplets have the same volume of ~2 µL and contain Rhodamine 6G molecules with concentration of 16 mM.