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Experimental

General remarks: All reactions were performed under slight positive pressure of nitrogen using oven
dried glassware. NMR spectra were determined on a Jeol ECS-400 or a Bruker AV3 600 MHz
spectrometer with the chemical shifts reported in parts per million (ppm), calibrated to the centre of
the solvent peak set. All solvents and starting materials were purchased from chemical stores where
available. High resolution mass spectra were collected by a Bruker micrOTOF-Q mass spectrometer.
Samples were run by School of Biosciences, University of Kent. TEM images were obtained on a Jeol
1230 equipped with a Gatan multiscan digital camera. It was operated at an accelerating voltage of
80kV. Melting points were recorded in open capillaries on a Stuart SMP10 melting point apparatus
and are uncorrected. Infrared (IR) spectra were recorded on a Shimadzu IR-Affinity 1, and reported
in wavenumbers (cm™). DLS studies were performed on a Malvern Zetasizer Nano ZS. UV-Vis were
recorded on a Shimadzu UV-1800, and reported in nm.

DLS studies: The studies conducted with compound 1 were done in series with an aliquot of the
most concentrated solution undergoing serial dilution. The studies conducted with compounds 1, 6
and various TBA halide salts were done in series with compound 6 added to previously annealed
solutions of compound 1 and TBA halide. Sample sizes were kept to 1 mL. All solvents used for DLS
studies were filtered to remove particulates from the solvents. Samples were heated to the
appropriate temperature and allowed to equilibrate for 2 minutes and then a series of 10 ‘runs’
were performed with each sample to give enough data to derive an appropriate average. In some
instances the raw correlation data indicated that a greater amount of time may be needed for the
samples to reach a stable state. For this reason only the last 9 ‘runs’ were included in the average
size distribution calculations.

HRMS studies: Samples were dissolved in DMSO at a concentration of 1 mg/ml before being diluted
1 in 100 in methanol. 10 pl of sample was injected into a flowing stream of 10 mM ammonium
acetate in 95% methanol in water (flow rate: 0.02 ml/min) and the flow directed into the
electrospray source of the mass spectrometer. Mass spectra were acquired in the positive ion mode
and data processed in Bruker’s Compass Data Analysis software utilising a lock mass.

UV-Vis studies: Sample were prepared in series with an aliquot of the most concentrated solution
undergoing serial dilution. All solutions underwent an annealing process and were allowed to rest
for approximately 2 minutes before undergoing analysis.

Compound 1: 1-Isocyanato-4-(trifluoromethyl)benzene (0.32 g, 1.82 mM) was added to a stirring
solution of aminomethanesulfonic acid (0.21 g, 1.82 mM) in anhydrous pyridine (10 mL) under an
inert atmosphere. The mixture was heated to 60 °C overnight. The pyridinium salt was then removed
by filtration. Yield: 82 % (0.56 g, 1.49 mM). The pyridinium salt (0.20 g, 0.53 mM) was dissolved in a
1M solution of tetrabutylammonium hydroxide in methanol (0.53 mL). This solution was then taken
to dryness and dissolved in DCM (20 mL) and washed with water (50 mL). The organic fraction was
then dried with magnesium sulfate and then taken to dryness to give the pure product as a white
solid. Yield: 100 % (2.85 g, 0.53 mM); mp: 142 °C; *H NMR (400 MHz, DMSO-d¢): 6: 0.92 (t, J, = 7.36
Hz, 12H), 1.25-1.35 (br m, 8H), 1.52-1.60 (br m, 8H), 3.14-3.18 (br m, 8H), 3.93 (d, J; = 5.96 Hz, 2H),
6.98 (t, J; = 5.96 Hz, 1H, NH), 7.49 (d, J; = 9.16 Hz, J, = 8.72Hz, 2H), 7.56 (d, J; = 8.72 Hz, 2H), 9.26 (s,
1H, NH); 3C{1H} NMR (100 MHz, DMSO-dg): 6: 13.5 (CHs), 19.2 (CH,), 23.1 (CH,), 55.9 (CH,), 57.5
(CH,), 117.1 (ArCH), 121.0 (ArC), 124.7 (q, J = 269.8 Hz, CFs), 125.8 (g, J = 4.0 Hz, ArC), 144.3 (ArC),
154.2 (CO); IR (film): v = 3277 (NH stretch), 1693, 1230, 1107, 840; HRMS for the sulfonate-urea ion
(CoHsF3N,0,S) (ESI): m/z: act: 297.0170 [M]- cal: 297.0162 [M]-.

Compound 2: This compound was synthesised in line with previously published methods.?



Compound 3: Ethylanesulfonic acid (0.25 g, 2.27 mM) was dissolved in a 1M solution of
tetrabutylammonium hydroxide in methanol (2.27 mL). The solution was then taken to dryness to
give the tetrabutylammonium salt of the acid as a white crystalline solid. Yield: 100 % (0.78 g, 2.27
mM); *H NMR (400 MHz, DMSO-d): 6: 0.93 (t, J = 7.32 Hz, 12H), 1.04 (t, J = 7.32 Hz, 3H), 1.31 (dt, J; =
14.64 Hz, J, = 7.52 Hz, 3H), 1.53-1.60 (br m, 8H), 2.35 (g, J = 7.80 Hz, 2H), 3.15-3.19 (br m, 8H).

Compound 4: The compound was produced with an analogous method to that described with the
synthesis of compound 1. A single equivalent of KOH (0.03 g, 0.53 mM) was added to an aqueous
solution (1 mL) of the pyridium salt (0.20 g, 0.53 mM) described in the synthesis of compound 1. The
water and remaining pyridine was then removed by slow evaporation giving the crude potassium
salt of compound 1. The proton spectrum was found to correlate with that observed for compound
1. 'H NMR (400 MHz, DMSO-dq): 6: 3.93 (d, J; = 5.96 Hz, 2H), 6.83 (s, 1H, NH), 7.50-7.57 (m, 4H), 9.21
(s, 1H, NH).

Compound 5: Aminomethanesulfonic acid (0.35 g, 3.05 mM) in acetonitrile (6 mL) was added to a
stirring solution of 1-isocyanato-4-nitrobenzene (0.50 g, 3.05 mM) in a 1N solution of
tetrabutylammonium hydroxide in methanol (3.05 mL). The solution was allowed to stir overnight at
room temperature. The mixture was then taken to dryness and the resulting oil, dissolved in DCM
(20 mL), was washed twice with water (20 mL). The organic phase was dried with magnesium
sulfate, taken to dryness and the pure product obtained by flash chromatography 100 % ethyl
acetate followed by 100 % methanol. The methanol faction was taken to dryness to give the pure
product as a yellow solid. Yield: 29 % (0.46 g, 0.89 mM); mp: 167 °C; 'H NMR (400 MHz, DMSO-d;): &:
0.92 (t, J; = 7.36 Hz, 12H), 1.25-1.35 (br m, 8H), 1.52-1.60 (br m, 8H), 3.14-3.18 (br m, 8H), 3.96 (d, J;
=5.96 Hz, 2H), 7.30 (t, J; = 5.96 Hz, 1H, NH), 7.58 (d, J; = 9.16 Hz, 2H), 8.04 (d, J; = 9.16 Hz, 2H), 9.63
(s, 1H, NH); 3C{*H} NMR (100 MHz, DMSO-dg): 6: 13.5 (CH3), 19.2 (CH,), 23.1 (CH,), 55.8 (CH,), 57.5
(CH,), 116.8 (ArCH), 124.9 (ArCH), 140.3 (ArC), 147.3 (ArC), 153.8 (CO); IR (film): v = 3271 (NH amide
stretch), 1697, 1220, 1111, 851; HRMS for the sulfonate-urea ion (CgHgN;OgS) (ESI): m/z: act:
274.0141 [M] cal: 274.0139 [M]".

Compound 6: This compound was synthesised by previously published, well established methods.?



Characterisation NMR
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Figure S1 — 'H NMR of compound 1 in DMSO-dg.
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Figure S2 — 'H NMR of compound 1 in DMSO-ds.
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Figure S3 — *H NMR of compound 1 in a DMSO-dg/D,0 (10%) mixture. Proton NMR analysis showed
75 % to 91 % exchange for the two NH protons of 1 within 30 minutes.
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Figure S4 — 'H NMR of compound 1 in a DMSO-d¢/D,0 (10%) mixture. Proton NMR analysis showed
75 % to 91 % exchange for the two NH protons of 1 within 30 minutes.
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Figure S5 — 3C NMR of compound 1 in DMSO-ds.
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Figure S6 — 3C NMR of compound 1 in DMSO-ds.
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Figure S7 — 'H NMR of compound 2 in DMSO-dg.
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Figure S8 — 'H NMR of compound 2 in DMSO-dg.
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Figure S9 — 13C NMR of compound 2 in DMSO-de.
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Figure S10 — 13C NMR of compound 2 in DMSO-ds.
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Figure S11 — *H NMR of compound 3 in DMSO-ds.



L1E6°0-

Lz / L e
09621 WW s I
evieL— s L
rzee L T r

olset L - 1226 ogmw\om 0
162G°L I
L5754 / Le
6755 L F
195" L— S
@

AN

2ELG ) L

nqwme\\% L «
0€09' L

L

8516°C

212

=]
T

4

o | ) 68966 %g
B 10£6°€ 88L6°€ -
T £ _©
L W. E W A.u
| = £
L5 o5 3
L. 12
: O 52
5 1 s 0
w fo ©
S [ <
=) . 5 °
c W ?KM S - o
= o\ wg
(49] . . o 9G1E° /=
J8zs 85064 | STk Q. 889G/ mg
T o 88952 N € ves st “
S Fo (@] 91€0'8—, wg
) o vsos/ -
Q. L (]
©
€ S
o Fe fut
o yLIT6— 95 ©
Y— et = ~
Dnnv nm aszoe—N wg
Lo
S 2
=2 [ =2
T T
fon ]
| - |
(o] L o
— i
wn (%]
) S
Pl —
> 3 >
b0 20
iT [

Chemical Shift (ppm)

Figure S14 —*H NMR of compound 5 in DMSO-de.
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Figure S15 — *H NMR of compound 5 in DMSO-dg.
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Further NMR experiments
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Figure S18 — Comparative *H NMR stack plot of compound 1, 6 and TBABr in DMSO-ds.
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2D NMR experiments
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Figure S19 — 'H COSY NMR of an equimolar solution of compound 1 in DMSO-ds.
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Figure S20 — *H NOESY NMR of an equimolar solution of compound 1 in DMSO-ds.
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Figure S21 — *H COSY NMR of an equimolar solution of compound 2 in DMSO-ds.
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Figure S22 — *H NOESY NMR of an equimolar solution of compound 2 in DMSO-ds.
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Figure S23 — 'H COSY NMR of an equimolar solution of compounds 1 and 2 in DMSO-de.
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Figure S24 — 'H NOESY NMR of an equimolar solution of compounds 1 and 2 in DMSO-ds.
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Figure S25 — *H COSY NMR of an equimolar solution of compounds 1 and 6 in DMSO-dg.
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TH NMR Binding Studies
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Figure S26 — Graph illustrating the change in chemical shift 'H NMR titration of 2 vs. 1 in DMSO-dg/

0.5 % H,0.
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Figure S27 — *H NMR titration in in DMSO-d¢/ 0.5 % H,0 with receptor 2 vs. 1. Values calculated using

the urea NH of compound 2.
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Figure S28 — Graph illustrating the change in chemical shift 'H NMR titration of 1 vs. TBAF in DMSO-
de/ 0.5 % H,0, following an aromatic CH due to NH peak broadening.
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Figure S29 — 'H NMR titration of 1 vs. TBAF in DMSO-dg/ 0.5 % H,0, following an aromatic CH due to
NH peak broadening.
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Figure S31 — *H NMR titration of 1 vs. TBACIl in DMSO-d¢/ 0.5 % H-0, following a urea NH.
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Figure S32 — Graph illustrating the change in chemical shift *H NMR titration of 1 vs. TBABr in DMSO-
de/ 0.5 % H,0, following the urea NHs.
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(o 6 65 Calculations by WinEQNMR2 version 2.00 by Michael 1. Hynes
] . Program run at 10:39:59 on 02/26/2016
L]
-— Ideal data for M, ML and ML2 system.
= IDEAL DATA TAKEN FROM ACTUAL FIT of JIMMYL.FIT
a Reactions: M + L = ML (betal = kl1); M + 2L = ML2 (betra2 = K1K2)
= Theoretical: k1=39.75, kik2 =289.07 del ML = -27.83, del ML2 = -82.29
) File prepared by M.J. Hynes october 22 2000 (shift is on 119sn)
6 . 60 = Equilibrium constants are floating point numbers
NO. A PARAMETER DELTA ERROR CONDITION DESCRIPTION
1 1 4.07094E+01 1.000E-01 1.910E+00 1.496E+00 BETAL
2 1 5.2B8159E+02 2.000E+0Q00 5.921E+02 1.973E+02 BETA2
3 1 6.64891E+00 1.000E+00 1.139e-02 1.027E+01 Sn SHIFT
4 1 6.68200E+00 1.000E-01 5.020E-03 5.170E+01 sSn(L)} SHIFT
6 55 5 1 6.69962e+00 5.000E-01 1.893e-02 1.112e+02 sn{L)2 SHIFT
ORMS ERROR = 9.93E-04 MAX ERROR = 1.32E-03 AT OBS.NO. 18
RESIDUALS SQUARED = 1.38E-05
RFACTOR = 0.0128 PERCENT

.005 .010 .015 .020 .025 .030 .035 .040 .045 .050 .055 .0e0 .065
Concentration, M

Figure S33 — 'H NMR titration of 1 vs. TBABr in DMSO-dg/ 0.5 % H,0, following a urea NHs.
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Figure S34 — Graph illustrating the change in chemical shift 'H NMR titration of 2 vs. 3 in DMSO-dg/

0.5 % H,0.
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IDEAL DATA FOR 1:1 COMPLEX USING CHEMICAL SHIFT (TEST11l.FIT)

S

Ny &

Reaction: sn + L = sn(L)
FILE: TEST11.FIT (Measured shift is on 119sn
IDEAL DATA: K1 = 63.0

File prepared by M. 3. Hynes, october 22 2000

Equilibrium constants are floating point numbers

1 1 6.30900E+01 2.000E-01 1.782E-02 5.057E+01

IDEAL DATA FOR 1:1 COMPLEX USING CHEMICAL SHIFT (TEST11.FIT)

)
91; DELTA M = 20.0; DELTA ML = 120.0

NO. A PARAMETER DELTA ERROR CONDITION DESCRIPTION
K1

2 1 2.00033e+01 2.000E-01 2.690E-03 5.265E+00 SHIFT S

3 1 1.19995e+02 1.000E+00 9.127E-03 3.406E+01

ORMS ERROR = 2.78E-03 MAX ERROR = 5,538E-03 AT 0BS.NO.
RESIDUALS SQUARED = 9.28E-05
RFACTOR = 0.0038 PERCENT

n
SHIFT sn(L)

4

Figure S35 —
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'H NMR titration in in DMSO-dg/ 0.5 % H,0 with receptor 2 vs. 3.
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Figure S36 — Graph illustrating the change in chemical shift *H NMR titration of 6 vs. 3 in DMSO-ds/
0.5 % H,0. Following the pyrrole NH.
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Calculations by WINEQNMRZ Version Z.UU by Michael 3J.
Program run at 10:46:47 on 02/26/2016

Hynes

Reaction: 5N + L =

FILE: TEST11.FIT (Measured shift is on 119sn)

IDEAL DATA: K1 = 63.091; DELTA M = 20.0; DELTA ML = 120.0
File prepared by M. 1. Hynes, october 22 2000

IDEAL DATA FOR 1:1 COMPLEX USING CHEMICAL SHIFT (TEST11.FIT)
sn(L)

Equilibrium constants are floating point numbers

NO . A PARAMETER DELTA ERROR CONDITION DESCRIPTION
1 1 4.00626E+00 2.000E-01 1.902E+00 6.358E+02 K1
2 1 9.25466E+00 2.000E-01 1.739E-03 5.550E+00 SHIFT 5n
3 1 9.72269e+00 1.000E+00 1.742E-01 5.705E+02 SHIFT sn{L)

ORMS ERROR = 2.97E-03 MAX ERROR = 7.54E-03 AT OBS.NO. 19
RESIDUALS SQUARED = 1.42-04
RFACTOR = 0.0294 PERCENT

005 .010 .015 .020 .025 .030 .035 .040 .045 .050 .055 .060 .0B5

Concentration, M

Figure S37 — 'H NMR titration of 6 vs. 3 in DMSO-dg/ 0.5 % H,0. Following the pyrrole NH.
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Figure S38 —'H NMR Job Plot in in DMSO-dg/ 0.5 % H,0 with receptor 2 vs. 1.
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Figure S39 —'H NMR Job Plot in in DMSO-dg/ 0.5 % H,0 with receptor 2 vs. 3.
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Figure S40 — 'H NMR Job Plot in in DMSO-dg/ 0.5 % H,0 with receptor 1 vs. TBACI. Following the
aromatic urea NH.
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Figure S41 — *H NMR Job Plot in in DMSO-dg/ 0.5 % H,0 with receptor 1 vs. TBABr. Following the
aromatic urea NH.
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DLS data
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Figure S42 — Graph illustrating the count rate for each DLS run at a specific temperature with
compound 1 in DMSO (1 mL).
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Figure S43 — Graph illustrating the count rate for each DLS run at a specific temperature with
compound 1 (30.00 mg) and compound 2 (19.33 mg) in DMSO (1 mL).
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Figure S44 — Graph illustrating the count rate for each DLS run at a specific temperature with
compound 1 (30.00 mg), TBA halide and compound 6 (19.33 mg) in DMSO (1 mL).
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Figure S45 — Raw correlation data for 10 DLS runs at 25 °C before heating to 40 °C with compound 1
(60.00 mg) in DMSO (1 mL).
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Figure S46 — Raw correlation data for 10 DLS runs at 40 °C with compound 1 (60.00 mg) in DMSO (1

mL).
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Figure S47 — Raw correlation data for 10 DLS runs at 25 °C after heating to 40 °C with compound 1
(60.00 mg) in DMSO (1 mL).
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Figure S48 — Raw correlation data for 10 DLS runs at 25 °C before heating to 40 °C with compound 1
(30.00 mg) in DMSO (1 mL).
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Figure S49 — Raw correlation data for 10 DLS runs at 40 °C with compound 1 (30.00 mg) in DMSO (1

mL).
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Figure S50 — Raw correlation data for 10 DLS runs at 25 °C after heating to 40 °C with compound 1
(30.00 mg) in DMSO (1 mL).
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Figure S51 — Raw correlation data for 10 DLS runs at 25 °C before heating to 40 °C with compound 1
(3.00 mg) in DMSO (1 mL).
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Figure S52 — Raw correlation data for 10 DLS runs at 40 °C with compound 1 (3.00 mg) in DMSO (1

mL).
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Figure S53 — Raw correlation data for 10 DLS runs at 25 °C after heating to 40 °C with compound 1
(3.00 mg) in DMSO (1 mL).
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Figure S54 — Raw correlation data for 10 DLS runs at 25 °C before heating to 40 °C with compound 1

(0.30 mg) in DMSO (1 mL).
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Figure S55 — Raw correlation data for 10 DLS runs at 40 °C with compound 1 (0.30 mg) in DMSO (1
mL).
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Figure S56 — Raw correlation data for 10 DLS runs at 25 °C after heating to 40 °C with compound 1
(0.30 mg) in DMSO (1 mL).
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Figure S57 — Raw correlation data for 10 DLS runs at 25 °C before heating to 40 °C with compound 1
(0.03 mg) in DMSO (1 mL).
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Figure S58 — Raw correlation data for 10 DLS runs at 40 °C with compound 1 (0.03 mg) in DMSO (1

mL).
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Figure S59 — Raw correlation data for 10 DLS runs at 25 °C after heating to 40 °C with compound 1
(0.03 mg) in DMSO (1 mL).
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Figure S60 — Raw correlation data for 10 DLS runs at 25 °C before heating to 40 °C with compound 1
(0.003 mg) in DMSO (1 mL).
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Figure S61 — Raw correlation data for 10 DLS runs at 40 °C with compound 1 (0.003 mg) in DMSO (1
mL).
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Figure S62 — Raw correlation data for 10 DLS runs at 25 °C after heating to 40 °C with compound 1
(0.003 mg) in DMSO (1 mL).
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Figure S63 — Raw correlation data for 10 DLS runs at 25 °C before heating to 40 °C with compound 1
(30.00 mg) and compound 2 (19.33 mg) in DMSO (1 mL).

36



0.8T

0.7T7

0.6T

0.5T7

0471

Correlation Coefficient

0.3t

0.2T1

0171

0.0

0.1

10 1000 100000 10000000 1000000000
Time (us)

Figure S64 — Raw correlation data for 10 DLS runs at 40 °C with compound 1 (30.00 mg) and
compound 2 (19.33 mg) in DMSO (1 mL).

0.7T1

06T

05T

0471

0317

Correlation Coefficient

0.2t1

011

0.0

Figure S65 — Raw correlation data for 10 DLS runs at 25 °C after heating to 40 °C with compound 1
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(30.00 mg) and compound 2 (19.33 mg) in DMSO (1 mL).
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Figure S66 — Raw correlation data for 10 DLS runs at 25 °C before heating to 40 °C with compound 1
(30.00 mg) and 1 molar equivalent of TBAF in DMSO (1 mL).
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Figure S67 — Raw correlation data for 10 DLS runs at 40 °C with compound 1 (30.00 mg) and 1 molar
equivalent of TBAF in DMSO (1 mL).
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Figure S68 — Raw correlation data for 10 DLS runs at 25 °C after heating to 40 °C with compound 1
(30.00 mg) and 1 molar equivalent of TBAF in DMSO (1 mL).
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Figure S69 — Raw correlation data for 10 DLS runs at 25 °C before heating to 40 °C with compound 1

(30.00 mg) and 1 molar equivalent of TBAF and compound 6 in DMSO (1 mL).
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Figure S70 — Raw correlation data for 10 DLS runs at 40 °C with compound 1 (30.00 mg) and 1 molar
equivalent of TBAF and compound 6 in DMSO (1 mL).
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Figure S71 — Raw correlation data for 10 DLS runs at 25 °C after heating to 40 °C with compound 1
(30.00 mg) and 1 molar equivalent of TBAF and compound 6 in DMSO (1 mL).
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Figure S72 — Raw correlation data for 10 DLS runs at 25 °C before heating to 40 °C with compound 1
(30.00 mg) and 1 molar equivalent of TBACl in DMSO (1 mL).
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Figure S73 — Raw correlation data for 10 DLS runs at 40 °C with compound 1 (30.00 mg) and 1 molar

equivalent of TBACI in DMSO (1 mL).
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Figure S74 — Raw correlation data for 10 DLS runs at 25 °C after heating to 40 °C with compound 1
(30.00 mg) and 1 molar equivalent of TBACI in DMSO (1 mL).
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Figure S75 — Raw correlation data for 10 DLS runs at 25 °C before heating to 40 °C with compound 1
(30.00 mg) and 1 molar equivalent of TBACI and compound 6 in DMSO (1 mL).
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Figure S76 — Raw correlation data for 10 DLS runs at 40 °C with compound 1 (30.00 mg) and 1 molar
equivalent of TBACI and compound 6 in DMSO (1 mL).
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Figure S77 — Raw correlation data for 10 DLS runs at 25 °C after heating to 40 °C with compound 1
(30.00 mg) and 1 molar equivalent of TBACI and compound 6 in DMSO (1 mL).
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Figure S78 — Raw correlation data for 10 DLS runs at 25 °C before heating to 40 °C with compound 1
(30.00 mg) and 1 molar equivalent of TBABr in DMSO (1 mL).
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Figure S79 — Raw correlation data for 10 DLS runs at 40 °C with compound 1 (30.00 mg) and 1 molar
equivalent of TBABr in DMSO (1 mL).

44



0.7T1

06T

05T

04T

0.3T1

Correlation Coefficient

0.21

011

0.0
0.1

10 1000 100000 10000000 1000000000
Time (ps)

Figure S80 — Raw correlation data for 10 DLS runs at 25 °C after heating to 40 °C with compound 1
(30.00 mg) and 1 molar equivalent of TBABr in DMSO (1 mL).
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Figure S81 — Raw correlation data for 10 DLS runs at 25 °C before heating to 40 °C with compound 1
(30.00 mg) and 1 molar equivalent of TBABr and compound 6 in DMSO (1 mL).
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Figure S82 — Raw correlation data for 10 DLS runs at 40 °C with compound 1 (30.00 mg) and 1 molar
equivalent of TBABr and compound 6 in DMSO (1 mL).
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Figure S83 — Raw correlation data for 10 DLS runs at 25 °C after heating to 40 °C with compound 1
(30.00 mg) and 1 molar equivalent of TBABr and compound 6 in DMSO (1 mL).
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Figure S84 — Raw correlation data for 10 DLS runs at 25 °C before heating to 40 °C with compound 1
(30.00 mg) and 1 molar equivalent of compound 6 in DMSO (1 mL).
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Figure S85 — Raw correlation data for 10 DLS runs at 40 °C with compound 1 (30.00 mg) and 1 molar
equivalent of compound 6 in DMSO (1 mL).
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Figure S86 — Raw correlation data for 10 DLS runs at 25 °C after heating to 40 °C with compound 1
(30.00 mg) and 1 molar equivalent of compound 6 in DMSO (1 mL).
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Figure S87 — Raw correlation data for 10 DLS runs at 25 °C before heating to 40 °C without
compound 1 in DMSO (1 mL).

48



0.0771

0.067

0.057

0.0471

0.037

Correlation Coefficient

0.027

0.017

0.00 t t t t t = t t i
0.1 10 1000 100000 10000000 1000000000

Time (ps)

Figure S88 — Raw correlation data for 10 DLS runs at 40 °C without compound 1 in DMSO (1 mL).
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Size distribution calculated by DLS
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Figure S89 — Average intensity particle size distribution, calculated from 9 DLS runs, of
supramolecular superstructures formed by dissolving 1 (60 mg) in DMSO (1 mL) at A) 25 °C, o)
heating to 40 °C and o) cooling to 25 °C. Only 9 of the available 10 DLS runs were used as in some
cases, due to the heating and cooling processes there were some obvious temperature equilibration

issues for the first run.
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Figure S90 — Average intensity particle size distribution, calculated from 9 DLS runs, of
supramolecular superstructures formed by dissolving 1 (3 mg) in DMSO (1 mL) at A) 25 °C, o) heating
to 40 °C and o) cooling to 25 °C. Only 9 of the available 10 DLS runs were used as in some cases, due
to the heating and cooling processes there were some obvious temperature equilibration issues for

the first run.
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Figure S91 — Average intensity particle size distribution, calculated from 9 DLS runs, of
supramolecular superstructures formed by dissolving 1 (0.3 mg) in DMSO (1 mL) at A) 25 °C, o)
heating to 40 °C and o) cooling to 25 °C. Only 9 of the available 10 DLS runs were used as in some
cases, due to the heating and cooling processes there were some obvious temperature equilibration

issues for the first run.
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Figure S92 — Average intensity particle size distribution, calculated from 9 DLS runs, of
supramolecular superstructures formed by dissolving 1 (0.03 mg) in DMSO (1 mL) at A) 25 °C, o)
heating to 40 °C and o) cooling to 25 °C. Only 9 of the available 10 DLS runs were used as in some
cases, due to the heating and cooling processes there were some obvious temperature equilibration

issues for the first run.
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Figure S93 — Average intensity particle size distribution, calculated from 9 DLS runs, of
supramolecular superstructures formed by dissolving 1 (0.003 mg) in DMSO (1 mL) at A) 25 °C, o)
heating to 40 °C and o) cooling to 25 °C. Only 9 of the available 10 DLS runs were used as in some
cases, due to the heating and cooling processes there were some obvious temperature equilibration

issues for the first run.
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Figure S94 — Average intensity particle size distribution, calculated from 9 DLS runs, of
supramolecular superstructures formed by dissolving 1 (30 mg) and 1 molar equivalent of compound
6 in DMSO (1 mL) at A) 25 °C, o) heating to 40 °C and 0) cooling to 25 °C. Only 9 of the available 10
DLS runs were used as in some cases, due to the heating and cooling processes there were some
obvious temperature equilibration issues for the first run. Precipitation could be seen to occur
during this process.
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Figure S95 — Average intensity particle size distribution, calculated from 9 DLS runs, of
supramolecular superstructures formed by dissolving 1 (30 mg) and 1 molar equivalent of TBAF in
DMSO (1 mL) at A) 25 °C, o) heating to 40 °C and 0) cooling to 25 °C. Only 9 of the available 10 DLS
runs were used as in some cases, due to the heating and cooling processes there were some obvious
temperature equilibration issues for the first run.
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Figure S96 — Average intensity particle size distribution, calculated from 9 DLS runs, of
supramolecular superstructures formed by dissolving 1 (30 mg) and 1 molar equivalent of TBAF and
compound 6 in DMSO (1 mL) at A) 25 °C, o) heating to 40 °C and o) cooling to 25 °C. Only 9 of the
available 10 DLS runs were used as in some cases, due to the heating and cooling processes there
were some obvious temperature equilibration issues for the first run.
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Figure S97 — Average intensity particle size distribution, calculated from 9 DLS runs, of
supramolecular superstructures formed by dissolving 1 (30 mg) and 1 molar equivalent of TBACI in
DMSO (1 mL) at A) 25 °C, o) heating to 40 °C and 0) cooling to 25 °C. Only 9 of the available 10 DLS
runs were used as in some cases, due to the heating and cooling processes there were some obvious
temperature equilibration issues for the first run.
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Figure S98 — Average intensity particle size distribution, calculated from 9 DLS runs, of
supramolecular superstructures formed by dissolving 1 (30 mg) and 1 molar equivalent of TBACI and
compound 6 in DMSO (1 mL) at A) 25 °C, o) heating to 40 °C and o) cooling to 25 °C. Only 9 of the
available 10 DLS runs were used as in some cases, due to the heating and cooling processes there
were some obvious temperature equilibration issues for the first run.
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Figure S99 — Average intensity particle size distribution, calculated from 9 DLS runs, of
supramolecular superstructures formed by dissolving 1 (30 mg) and 1 molar equivalent of TBABr in
DMSO (1 mL) at A) 25 °C, o) heating to 40 °C and 0) cooling to 25 °C. Only 9 of the available 10 DLS
runs were used as in some cases, due to the heating and cooling processes there were some obvious
temperature equilibration issues for the first run.
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Figure S100 — Average intensity particle size distribution, calculated from 9 DLS runs, of
supramolecular superstructures formed by dissolving 1 (30 mg) and 1 molar equivalent of TBABr and
compound 6 in DMSO (1 mL) at A) 25 °C, o) heating to 40 °C and o) cooling to 25 °C. Only 9 of the
available 10 DLS runs were used as in some cases, due to the heating and cooling processes there
were some obvious temperature equilibration issues for the first run.
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UV-Vis spectra
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Figure S101 — UV-Vis spectra of compound 1 in DMSO.
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Figure S102 — UV-Vis spectra of compound 2 in DMSO.
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Figure $S103 — UV-Vis spectra of compounds 1 and 2 in DMSO.
3
—0.0556 mM —0.0504 mM
—0.0448 mM —0.0392 mM
—0.0336 MM —0.0280 mM
2.5 —0.0224 mM —0.0168 MM
—0.0112 mM —0.0056 MM
——0.0050 mM 0.0045 mM
5 0.0039 mM 0.0034 MM
0.0028 mM 0.0022 mM
9 0.0017 mM 0.0011 mM
& 0.0006 mM
£ 15
Q
wy
-]
<
1
05 - |
0 . 1 T I I I
260 360 460 560 660 760

Wavelength (nm)

Figure S104 — Full UV-Vis spectra shown in Figure 3 of 1 in DMSO.
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Powder X-ray diffraction

General procedure

Powder X-ray diffraction was used to examine the phase purity of compounds 4 and 5 created during
this study in the solid state. This was carried out using a Rigaku MiniFlex diffractometer, operating in
Bragg-Brentano geometry, with Cu Ko, radiation and a D/teX Ultra 1D detector. Samples were held
on a Si zero-background sample holder at ambient temperatures. The sample obtained from
compound 4, which was close to a single phase was fitted using the Le Bail method? in the program
Rietica* and shown in Figure S105 and S106, showing its purity. A comparison of a powder diffraction
pattern calculated from the single crystal structure determined in this study for compound 5 with its
powder diffraction pattern clearly indicated that it was not a single phase, see Figure S107.
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Figure $105 — Full powder X-ray diffraction pattern of compound 4. Red — actual data. Black —
predicted diffraction pattern from single crystal data. Green — difference between experimental and
predicted powder diffraction pattern.
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A New refinement
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Figure $106 — Expanded powder X-ray diffraction pattern of compound 4. Red — actual data. Black —
predicted diffraction pattern from single crystal data. Green — difference between experimental and
predicted powder diffraction pattern.
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Figure $S107 — Full powder X-ray diffraction pattern of compound 5. Red — actual data. Black —
predicted diffraction pattern from single crystal data.
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TEM data

Sample preparation

Samples were mounted on formvar/carbon coated 600mesh copper grids and were negatively
stained with 2% aqueous uranyl acetate. Samples were obtained from DMSO solutions of
compounds 1 (56 mM), 2 (56 mM) and 6 (56 mM) in various combinations. The TEM samples were
prepared without heating at any stage.

These TEM images do not appear in the main body of the text because they are of low quality; the
staining process produced non uniform images that were also observed when the process was
repeated. The images in the sections below were obtained from both the initial and repeated TEM
imaging process. The images presented here are for consideration and should not be classed as
definite representations of the nanostructures reported herein.

Images

Filtered DMSO only

The images shown in this section were obtained by the direct addition of DMSO only to the TEM
grids, followed by the staining methods previously mentioned. These images are included to
illustrate the differences between those samples which contain compounds 1, 2 and/or 6 and those
which do not.
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Here we see some possible evidence of those structures observed by analogous DLS experiments.
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Compound 1 and 2
Here we see some possible evidence of those structures observed by analogous DLS experiments.
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Compound 1 and 6

This singe image illustrates the precipitation of compound 6 from an equimolar solution of
compounds 1 and 6. The aggregates here appear to be solid and form regular structures. This goes
some way to explain the large structures observed in the analogous DSL samples.
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