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Reproducibility after de-swelling and re-swelling 
 

 
Fig. S1. De-swelling of a bilayer strip soaked in hexadecane. (a) A swollen strip from a 

hexadecane bath is place on a substrate. Scale bar: 300 m. (b) The strip in (a) after washing 

with ethanol. (c) De-swelling process of a hexadecane-swollen strip in an ethanol bath. The 

helical ribbons unwinds and straightens as time goes by. 

 

In Fig. S1(a), we show a swollen strip taken out of a hexadecane bath and placed on a glass 

substrate. Since the vapor pressure of hexadecane is low, the strip maintains its helical ribbon 

shape unless the hexadecane is washed out. Fig. S1(c) shows snapshots of the same strip 

during the process of de-swelling in the ethanol bath. Ethanol dissolves hexadecane, swells 

the PDMS negligibly, and dries quickly. The helical ribbon unwinds slowly and becomes 

almost a flat strip. However, the ribbon is not completely flat due to either swelling by the 

ethanol or to a residual stress in the parylene film. The ethanol-washed strip can be dried on a 

substrate in a flat configuration and thus be made ready for re-swelling, as shown in Fig. 

S1(b). 
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Fig. S2. Repeated swelling of a bilayer strip. (a)-(c) Swollen configurations of a bilayer strip 

after the first, second, and third swelling, respectively. Scale bar: 300 m. Note, the images 

were taken from the same strip after each swelling, but were not taken from the same part of 

the strip. Additionally, all the helical ribbons are right-handed; the ribbon in Fig. S2(a) looks 

different from the others, because the image is obtained from a different focal plane. 

 

To demonstrate reproducibility, we repeated the swelling of a single strip three times, as 

shown in Fig. S2. Each swelling was followed by de-swelling. We confirmed the ridge and 

valley align along the helical axis even after the repeated swelling, as our model predicts. We 

found that the diameter of the helical tubule, however, increases approximately by 10% after 

the first swelling. Because a larger diameter means less stress, we presume the first contact 

with the swelling solvent, i.e., hexadecane, permanently changes properties of a bilayer strip, 

i.e., its swelling ratio by dissolving out un-crosslinked components. Alternatively, a remnant 

of the de-swelling solvent, i.e., ethanol, in the PDMS may affect the re-swelling. 

 

 
Fig. S3. Swollen disks in a “taco” shape. Scale bar: 300 m. (Inset) A punch-cut disk in a flat 

configuration before swelling.  

 

Reproducibility within a batch is shown with Fig. S3. Because it is difficult to produce 

identical strips by manual cutting, we used a biopsy punch of 1 mm diameter to make disks 

for a single sheet; their swollen configurations, “tacos”, are shown in Fig. S3. Note that the 

“tacos” have different viewing angle but almost identical shapes. 

 

 



  

3 

 

Control experiments to show the role of topography 
 

 
Fig. S4. Different shapes of swollen strips manifesting the role of topography. (a)-(c) Ethanol-

washed strips in flat configuration on a substrate. Scale bars: 1 mm. Ridges/Valleys are 

parallel to the strip in (a) and perpendicular to the strip in (b). The strip in (c) has no 

topographic structure. (d) The straight half-pipe results from swelling of (a), and the self-

interacting “roll” results from swelling of (b). (e) The bilayer strip without topography, (c), 

also buckles into a helical tubule (Bottom). But the buckling is not guided, so that the shapes 

it develops into are irregular and uncontrolled. 

 

Fig. S4 provides the results of control experiments to demonstrate the role of topography. 

Namely, swelling of a flat bilayer strip without topography (Fig. S4(c)) is compared to two 

other extreme cases with topography. As shown in Fig. 4(a), (b), and (d), the bilayer strips 

with ridges parallel or perpendicular to the strips result in a straight half-pipe and a self-

interacting “roll”, respectively, where the ridges/valley are parallel to the direction of zero 

curvature as expected. By contrast, as shown in Fig. 4(e), the strip without guiding 

topography buckles into a self-interacting and irregular helical tubule. 

 
Solutions for the geometric model of helical ribbons with parylene 
on the flat side of topographically patterned PDMS films. 
 
In Fig. S5(a), we show example contour plots of Equation 3 and Equation 4 of the main text. 

In other words, the r and  on the green curve satisfy Equation 3, which characterizes the 

constraint that the length of the PDMS strip, Lout, expands to match L. The points on the red 

curve satisfy a constraint that the length of ridges located outside of the helical ribbon, LR,out, 

will swell to match LR. Thus, the two points of intersection between the green and red curves 

are solutions that meet both constraints. Note, they represent purely geometric solutions. In 

practice, we expect/assume that the solution with a larger radius (Fig. S5(c)), and thus a 

smaller bending energy, leads to a helical ribbon close to the observation (Fig. S5(d)). 
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Fig. S5. Comparison of geometric model solutions with an experimental result. (a) Example 

contour plots of Equation 3 (Green) and Equation 4 (Red) in the main text and. Two cross 

points correspond to two sets of solutions, r and  which can simultaneously satisfy Eq. (3) 

and (4). Here the effective swelling ratio, = 1.14, and the ridge angle, = 50 o. T’R and T’V 

are 40 m and 25 m, respectively. (b) and (c) correspond to two sets of solutions in (a) with 

the smaller radius and the larger radius, respectively. The width of the ridge region (red) is 

100 m. (d) Optical microscopy image of the corresponding bilayer strips in its swollen state 

placed in a solvent. 

 

 

 

Derivation of equations calculating lengths on the helical ribbon 
 

Because it is intrinsically flat, the distance between two points on a cylindrical surface can be 

calculated by unrolling the curved surface onto the corresponding planar surface. On the 

planar surface, the distance is simply determined from the Pythagorean sum of the lengths of 

two orthogonal components: the arc length and the length along the cylindrical axis, as shown 

in Fig. S6. Notice, also, that while the length measured along the cylindrical axis is 

independent of the radius of the cylinder, the arc length depends on the radius. Consider a 

cylindrical shell with inner and outer radii, for example; in this case, the length of a line on 

the outer surface is different from the length of its projection onto the inner surface, because 

they have different arc-length components. 

 



  

5 

 

 
Fig. S6. A 3D perspective view (Left) and a planar figure (Right) of a helical ribbon. The side 

(Left) and top (Right) view. Lz is parallel to the cylindrical axis. 

 

Lengths on the helical ribbon with the same zero Gaussian curvature are readily calculated. 

Fig. S6 shows the planar figure of the helical ribbon. For the case of the bilayer strip with 

parylene-C deposited on the patterned side, i.e., Fig. 3(b) in the main text, the flat side is 

located outside of the ribbon. The radius of curvature of this flat side is r, and the radius of 

curvature of the patterned surface, located on the cylindrical shell’s inner side, is r-T’v. When 

Lz is the length component along the cylindrical axis, then both inner and outer sides also have 

a length component Lz. However, L of the outer side is longer than the corresponding length 

on the inner side, i.e., by the factor r/(r-T’v). The length along the flat side, Lflat, is the 

Pythagorean sum of Lflat,z and Lflat, and it can be expressed in terms of Lvalley, Lvalley,z and 

Lvalley,that are lengths on the cylindrical plane where the valley is located. 
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LR can be written using the Pythagorean sum in the similar way. 
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