Electronic Supplementary Information for:

A non-fullerene electron acceptor modified by thiophene-2-carbonitrile for solution-processed organic solar cells

Shuixing Li, Jielin Yan, Chang-Zhi Li, Feng Liu, Minmin Shi, Hongzheng Chen and Thomas P. Russell

\[a \] MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, & Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China.

\[b \] Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

\[c \] Department of Physics and Astronomy, Shanghai jiao tong University, Shanghai, 200240, P. R. China.

\[d \] Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003, USA.

Supporting Information

Contents

Instrument, Materials.. S2

TGA curve of F8-DPPTCN.. S3

DSC curve of F8-DPPTCN, J-V curves at different temperatures... S4

J-V curves at different weight ratios / amounts of DIO additives... S5

\(^1\)H NMR / \(^{13}\)C NMR spectrum of F8-DPPTCN solution in CDCl\(_3\) S6

AFM images, References... S7
Instrument

1H NMR and 13C NMR spectra were obtained on a Bruker Advance III 400 (400 MHz) nuclear magnetic resonance spectroscope. UV-vis absorption spectra were taken on a Shimadzu UV-2450 spectrophotometer. MALDI-TOF MS spectra were measured on a Walters Maldi Q-TOF Premier mass spectrometry. Thermogravimetric analysis (TGA) was carried out on a WCT-2 thermal balance under protection of nitrogen at a heating rate of 10 °C/min. Differential scanning calorimetry (DSC) was recorded on a Pekin-Elmer Pyris 1 differential scanning calorimeter. Cyclic voltammetry (CV) was done on a CHI600A electrochemical workstation with Pt disk, Pt plate, and standard calomel electrode (SCE) as working electrode, counter electrode, and reference electrode, respectively, in a 0.1 mol/L tetrabutylammonium hexafluorophosphate (Bu_4NPF_6) CH_2Cl_2 solution. The CV curves were recorded versus the potential of SCE, which was calibrated by the ferrocene-ferrocenium (Fc/Fc^+) redox couple (4.8 eV below the vacuum level). Topographic images of the films were obtained on a Veeco MultiMode atomic force microscopy (AFM) in the tapping mode using an etched silicon cantilever at a nominal load of ~2 nN, and the scanning rate for a 10 μm ×10 μm image size was 1.5 Hz.

Materials

All reagents and solvents, unless otherwise specified, were purchased from Aladdin, Aldrich and J&K Scientific Ltd. and were used without further purification. P3HT (96% H-T regioregularity, $M_n = 26$ kg/mol, polydispersity = 2.0) was
purchased from Merck Co. Poly [(9,9-bis(3’-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-
(9,9-dioctylfluorene)] (PFN, $M_n = 20.0$ kg/mol, polydispersity = 2.1) was synthesized
in our lab according to the published procedure.1

\begin{figure}
\centering
\includegraphics[width=\textwidth]{fig_s1.png}
\caption{TGA curve of F8-DPPTCN.}
\end{figure}
Fig. S2 DSC curve of F8-DPPTCN.

Fig. S3 J-V curves at different annealing temperatures (Blend ratio: 1:2).
Fig. S4 $J-V$ curves at different weight ratios (annealed at 95 °C).

Fig. S5 $J-V$ curves at different amounts of DIO additives (Blend ratio: 1:3).
Fig. S6 1H NMR spectrum of F8-DPPTCN solution in CDCl$_3$.

Fig. S7 13C NMR spectrum of F8-DPPTCN solution in CDCl$_3$.

56
Fig. S8 AFM height images (a, b, c and d) and phase images (e, f, g and h) of 1:2 as-cast (a, e), 1:2 annealed (b, f), 1:3 annealed (c, g) and 1:3 annealed DIO (d, h) films.

References