Supporting Information

Fabrication of BiTaO$_4$ Nanosheets Exposed {020} Facets Toward Efficient Photocatalytic Performance

Yidong Hu, Gang Chen,* Chunmei Li, Yansong Zhou, Jingxue Sun,* Sue Hao, zhonghui Han
Department of Chemistry, Harbin Institute of Technology, Harbin, 150001, P. R. China. E-mail: gchen@hit.edu.cn; Fax: +86-0451-86413753; Tel: +86-0451-86413753
* Corresponding author

Fig. S1 SEM image of bulk BiTaO$_4$.

Fig. S2 TEM images of BiTaO$_4$ SCNs.
Fig. S3 Cycle operation of H_2 evolution on the as-prepared BiTaO$_4$ SCNs.

Fig. S4 Degradation dynamic curves of the phenol solutions over bulk BiTaO$_4$ and BiTaO$_4$ SCNs under simulated sunlight irradiation (a), and under the visible-light irradiation (b).
Fig. S5 Photocurrent response (a), electrochemical impedance spectroscopy (EIS) plots (b), and photoluminescence (PL) spectra (c) of bulk BiTaO$_4$ and BiTaO$_4$ SCNs.

The bandgaps of the bulk BiTaO$_4$ and BiTaO$_4$ SCNs were obtained via the Butler equation:

$$(h\nu\alpha)^{1/n} = A(h\nu - E_g)$$

in which h, ν, α and E_g are the Planck’s constant, vibration frequency, absorption coefficient and band gap, respectively. A is the proportionality constant, and the exponent $n=0.5$ for the direct bandgap semiconductor.