Supplementary Information

Thermoelectric properties of Bi-based Zintl compounds Ca_{1-x}Yb_xMg₂Bi₂

Jing Shuai[†], Zihang Liu[‡], Hee Seok Kim[†], Yumei Wang^{†,§}, Jun Mao[†], Ran He[†], Jiehe Sui^{‡,*}, and Zhifeng Ren^{†,*}

[†]Department of Physics and TcSUH, University of Houston, Houston, TX 77204, USA

^{*}National Key Laboratory for Precision Hot Processing of Metals and School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China [§]Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China

Fig. S1. EDS pattern of Ca_{0.5}Yb_{0.5}Mg₂Bi₂.

Calculated (ZT)_{eng},(PF)_{eng}, output power density and leg efficiency

Kim *et al.* proposed the engineering dimensionless figure of merit $(ZT)_{eng}$ as a function of thermal boundaries, *i.e.*, the temperatures of hot side T_h and cold side T_c , which is defined as,¹

$$(ZT)_{eng} = \frac{\left(\int_{T_c}^{T_h} S(T) dT\right)^2}{\int_{T_c}^{T_h} \rho(T) dT \int_{T_c}^{T_h} \kappa(T) dT} (T_h - T_c) = \frac{(PF)_{eng}}{\int_{T_c}^{T_h} \kappa(T) dT} (T_h - T_c)$$
(1)

where S(T), $\rho(T)$, and $\kappa(T)$ are temperature dependent thermoelectric properties, and $(PF)_{eng}$ is the engineering power factor with respect to the boundary temperatures. $(ZT)_{eng}$ implies the cumulative effect of TE properties at a given thermal boundary. $(PF)_{eng}$ has unit of W m⁻¹ K⁻¹, different from the conventional unit of W m⁻¹ K⁻² due to its cumulative effect associated with the temperature gradient.

Assuming $T_c = 323$ K and 2 mm of leg length, we have calculated the maximum efficiency η_{max} and its corresponding output power density P_d including Thomson heat based on $(ZT)_{eng}$ and $(PF)_{eng}$ using the following formula.¹

$$\eta_{\max} = \eta_c \frac{\sqrt{1 + (ZT)_{eng} \alpha_1 \eta_c^{-1} - 1}}{\alpha_0 \sqrt{1 + (ZT)_{eng} \alpha_1 \eta_c^{-1} + \alpha_2}}$$
(2)

$$P_{d} = \frac{(PF)_{eng}\Delta T}{L} \frac{\sqrt{1 + (ZT)_{eng}\alpha_{1}\eta_{c}^{-1}}}{\left(\sqrt{1 + (ZT)_{eng}\alpha_{1}\eta_{c}^{-1}} + 1\right)^{2}}$$
(3)

where,

$$\alpha_{i} = \frac{S(T_{h})\Delta T}{\int_{T_{c}}^{T_{h}} S(T)dT} - \frac{\int_{T_{c}}^{T_{h}} \tau(T)dT}{\int_{T_{c}}^{T_{h}} S(T)dT} W_{T} \eta_{c} - iW_{J} \eta_{c} \quad (i = 0, 1 \text{ and } 2)$$

$$\int_{T_{c}}^{T_{h}} \int_{T_{c}}^{T_{h}} \sigma(T)dT dT \int_{T_{c}}^{T_{h}} \sigma(T)dT dT$$

$$(4)$$

$$W_{J} = \frac{\int_{T_{c}}^{T_{c}} \int_{T}^{T} \rho(T) dT dT}{\Delta T \int_{T_{c}}^{T_{h}} \rho(T) dT} \text{ and } W_{T} = \frac{\int_{T_{c}}^{T} \int_{T}^{T} \tau(T) dT dT}{\Delta T \int_{T_{c}}^{T_{h}} \tau(T) dT}$$
(5)

 η_c is Carnot efficiency, and W_J and W_T are weight factors representing a practical contribution of Joule and Thomson heat affecting the heat flux at the hot side, respectively, based on their cumulative effect.

Reference:

1. H. S. Kim, W. S. Liu, G. Chen, C. W. Chu and Z. F. Ren, *Proc. Natl. Acad. Sci. U. S. A.*, 2015, **112**, 8205-8210.