Ionic liquid capped carbon dots as the high-performance friction-reducing and antiwear additive of poly(ethylene glycol)

Baogang Wang,*ac Weiwei Tang,c Hongsheng Lu*abc and Zhiyu Huangabc

a Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu 610500, P. R. China

b Engineering Research Center of Oilfield Chemistry, Ministry of Education, Chengdu 610500, P. R. China

c College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China

* Corresponding authors. Fax: +86-28-83037330; Tel.: +86-28-83037330.

Email address: bgwang@swpu.edu.cn & hshlu@swpu.edu.cn.
Scheme S1 Schematic illustration of formation procedures of the CDs-B₃r.

Fig. S1 Preparation procedures of CQDs-NTf² from CQDs-B₃r by the anion exchange.

Fig. S2 XRD pattern of CDs-B₃r.
Fig. S3 TGA curve of CDs\textsubscript{NTf2} under air atmosphere.

Fig. S4 (a) Mean friction coefficients and (b) mean wear scar diameters lubricated by PEG and 0.3 wt\% CDs\textsubscript{NTf2}/PEG suspension under tested duration times of 120 and 320 min (load: 392 N; rotate speed: 1200 r/min).
Fig. S5 EDX spectra of the worn surfaces of lower steel balls lubricated by PEG (black line) and 0.3 wt% CDs_{NTf}/PEG suspension (red line) under loads of (a) 392 N and (b) 600 N.