Supporting information

Polypyrrole Multilayer-Laminated Cellulose for Large-Scale Repeatable Mercury Ion Removal

Zahid Hanif,1† Seyeong Lee,1† Gullam Hussain Qasim,2 Indah Ardiningsih,2 Jeong-Ah Kim,1 Jaeyoung Seon,2 Seunghee Han,2* Sukwon Hong,1,3* Myung-Han Yoon1*

1School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea

2School of Environmental Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea

3Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea

†These authors contributed equally to this work.

*Email addresses: mhyoon@gist.ac.kr (M.-H. Yoon)
1. Adsorption kinetics study

Langmuir and Freundlich isotherms is expressed by equation (S1) and (S2), respectively,

\[q_e = \frac{abC_e}{1 + bC_e} \] \hspace{1cm} (S1)

\[q_e = k(C_e)^{1/n} \] \hspace{1cm} (S2)

where \(q_e \) is the amount of mercury adsorbed per unit mass of PPy-cellulose absorbent (mg/g), \(C_e \) is the equilibrium concentration of mercury ions (mg/L), \(a \) is the maximum adsorption capacity (mg/g), \(b \) is the constant related to the free energy of adsorption (L/mg). The Freundlich constant, \(k \) is an indicator of the relative adsorption capacity of adsorbent (mg/g), and \(1/n \) is the adsorption intensity. For the adsorption mechanism study, the various solutions of mercury ions were prepared with the concentrations ranging from 10 to 250 ppm at pH 6 and the adsorption experiments were conducted for 60 min dipping time at room temperature. Subsequently, the mercury removal data were fitted separately according to the Langmuir and Freundlich isotherm models. Langmuir and Freundlich isotherm parameters were obtained through the application of a nonlinear fitting for three different amounts of adsorbent (0.3, 0.4, and 0.5 g).

The mercury uptake kinetics data was treated by using the pseudo-first and pseudo-second order models. The pseudo-second order equation can be written as

\[\frac{1}{q_t} = \frac{k_1}{q_e} + \frac{1}{q_e} \] \hspace{1cm} (S3)

where \(k_1 \) is the pseudo-first order rate constant (min\(^{-1}\)) of adsorption, and \(q_e \) and \(q_t \) (mg/g) are the amounts of metal ion adsorbed at equilibrium and at t (min), respectively. The value of \(1/q_e \) was calculated from the experimental results and plotted against \(1/t \) (min\(^{-1}\)). The linear
form of pseudo-second order equation can be written as

\[
\frac{t}{q_t} = \left(\frac{1}{k_2 q_e^2} \right) + \left(\frac{1}{q_e} \right) t
\]

where ‘\(k_2\)’ is the pseudo-second order rate constant of adsorption (g/(mg-min)).
The plots of mass percentage of PPy as a function of number of vapor polymerization cycles on cellulose (black) and nylon membranes (red). The SEM images show the surface morphology of PPy multilayer-laminated nylon mesh.

Fig. S1
3. FT-IR analysis

Fig. S2 FT-IR spectra of pristine and PPy-coated cellulose.
4. Mercury removal efficiency using pristine cellulose

Fig. S3 The comparison of mercury ion removal efficiency between pristine and PPy multilayer-laminated cellulose.
5. Mercury ion removal using aged and harshly mechanically deformed PPy-cellulose hybrid

![Graph showing mercury ion removal efficiency]

Fig. S4 The mercury ion removal efficiency using freshly-prepared, 3-month aged, harshly mechanically deformed PPy-cellulose hybrid adsorbent (150 ppm, pH 6, room temperature).
Table S1. The pH of mercury ion solution measured before and after adsorption experiments using the 150 ppm of mercury ion solutions at room temperature.

<table>
<thead>
<tr>
<th>pH (initial)</th>
<th>pH (final)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.05</td>
<td>0.97</td>
</tr>
<tr>
<td>2.07</td>
<td>2.05</td>
</tr>
<tr>
<td>3.07</td>
<td>2.98</td>
</tr>
<tr>
<td>4.00</td>
<td>3.91</td>
</tr>
<tr>
<td>5.03</td>
<td>5.00</td>
</tr>
<tr>
<td>6.02</td>
<td>5.97</td>
</tr>
</tbody>
</table>