Highly-Ordered Polypyrrole Coated Co(OH)$_2$ Architectures for High-Performance Asymmetric Supercapacitors

Jun Seop Leea,b, Dong Hoon ShinaⅡ, Wooyoung Kima, and Jyongsik Janga,*

aSchool of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), 599 Gwanangno, Gwanak-gu, Seoul, 151-742 (Korea). Fax: +82-2-888-7295; Tel: 82-2-880-8348; *e-mail: jsjang@plaza.snu.ac.kr

bMaterials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, (USA)

ⅡThese authors contributed equally to this work.
1. SAED pattern of Co(OH)$_2$

Figure S1. Selected area electron diffraction (SAED) pattern of Co(OH)$_2$NSs.
2. XRD spectrum of the Co(OH)$_2$ architectures

![XRD spectrum of Co(OH)$_2$ architectures](image)

Figure S2. X-ray diffraction (XRD) pattern of Co(OH)$_2$ architectures and pristine carbon cloth (black: pristine carbon cloth; red: Co(OH)$_2$MP; blue: Co(OH)$_2$MF; green: Co(OH)$_2$NS).
3. Gravimetric capacitance of each electrode

Figure S3. Calculated gravimetric capacitance (F g$^{-1}$) of each electrode for various scan rates (10 to 200 mV s$^{-1}$).
4. Structure of the ASCs

Figure S4. (a) Schematic diagram of asymmetric supercapacitors (ASCs) composed of two different electrodes (Co(OH)$_2$@PPy: positive; CNTMN: negative) and polymer-gel electrolyte. (b) Low- and (c) high-magnification of FE-SEM images of the CNTMN decorated carbon cloth.
5. Deformations of the ASCs

Figure S5. Digital photographs of (a) flat-, (b) bended-, and (c) twisted-ASCs.
6. Volumetric and gravimetric capacitance of the ASCs

Figure S6. Volumetric (left) and gravimetric (right) capacitances of the ASCs calculated from the galvanostatic charge-discharge curves as a function of current density.
7. Real application of the ASCs

Figure S7. Blue light-emitting diode (LED) powered by the fabricated ASC.
8. CV curves of the ASCs with deformations

Figure S8. CV curves (scan rate: 50 mV s\(^{-1}\)) of ASCs for various deformations (black: flat; red: bend; blue: twist).