Graphene/ZIF-8 composites with tunable hierarchical porosity and electrical conductivity

Daeok Kim, a Dae Woo Kim, b Won G. Hong c and Ali Coskun* d

a Graduate School of Energy, Environment, Water and Sustainability (EEWS), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea.
b Department of Chemical & Biomolecular Engineering, KAIST, Daejeon 305-701, Republic of Korea.
d Department of Chemistry, KAIST, Daejeon 305-701, Republic of Korea.

Electronic Supplementary Information (ESI)
Fig. S1 FT-IR spectra of graphene oxide (GO) and reduced graphene oxides (RGOs) obtained after thermal annealing of GO at 250, 450 and 650°C.
Fig. S2 PXRD spectra of GO (red) and RGOs (black).

Fig. S3 SEM images of GO and RGOs obtained after thermal annealing of GO at 250, 450 and 650°C.
Fig. S4 FT-IR spectra of GO and RGO/ZIF-8 nanocomposites.

Fig. S5 PXRD spectra of GO/ZIF-8 before (red) and after CO₂ pressurization at 20 bar, 253 K (black).
Fig. S6 SEM images of (a) graphite and (b) RGO650 after their immersion into the suspension of ZIF-8 crystals and subsequent washing with MeOH to remove any physisorbed crystals. Subset of (a) is the corresponding XRD pattern after washing.

Fig. S7 Pore size distributions of GO- and RGO/ZIF-8 nanocomposites.
Fig. S8 (a) Ar isotherm of RGO650. BET surface area analyses (b) and the comparison of CO₂ uptake capacities (c) of RGO650 and RGO650/ZIF-8 at 303 K, up to 35 bar.