Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

Unconventional structural and morphological transitions of nanosheets, nanoflakes and nanorods of AuNP@MnO₂

Ben Liu,^a Islam M. Mosa,^{a,b} Wenqiao Song,^a Haoquan Zheng,^c Chung-Hao Kuo,^a James F. Rusling,^{a,d} Steven L. Suib,^{*a,d} Jie He^{*a,d}

^aDepartment of Chemistry, University of Connecticut, Storrs, Connecticut, 06269, USA
Emails: <u>steven.suib@uconn.edu</u> (SLS) and jie.he@uconn.edu (JH)
^bDepartment of Chemistry, Tanta University, Tanta, 31527, Egypt
^cBerzelii Center EXSELENT on Porous Materials, Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, 10691, Sweden
^dInstitute of Materials Science, University of Connecticut, Storrs, Connecticut, 06269, USA.

Contents

1. Synthesis of gold nanoparticles (AuNPs)	2
2. Synthesis of MnO ₂ nanocatalysts without AuNPs	2

Figure Contents

Figs. S1-4. Supplementary morphological and structural characterizations of AuNP@MnO2 nanosheets.

Figs. S5-7. Morphologies and structures of AuNP@MnO2 nanosheets and nanorods with various diameters of AuNPs.

Figs. S8-12. Supplementary morphological and structural characterizations of AuNP@MnO₂ nanoflakes, curled nanoflakes and nanorods.

Fig. S13. Morphologies and structures of MnO₂ nanosheets and nanorods synthesized without AuNPs.

Figs. S14-20. Supplementary electrocatalytic activities of AuNP@MnO2 nanocatalysts.

1. Synthesis of gold nanoparticles (AuNPs)

1.1 Synthesis of AuNPs with a diameter of 4 nm

A 100 mL aqueous solution containing 4.9 mg of HAuCl₄ and 3.7 mg of sodium citrate was first mixed in a conical flask. Next, 2 mL of ice-cold, freshly prepared 0.1 M of NaBH₄ solution was added to the solution under strong stirring. The solution was further stirred for 3-4 hrs. The average size of obtained AuNPs is ~4 nm. Then, 30 mg of sodium citrate was added the above solution to obtain citrate-protected AuNPs.

1.2 Synthesis of AuNPs with the diameter of 14 nm, 23 nm and 45 nm

For 14 nm AuNP, 100 mg of HAuCl₄ was first dissolved in 1 L of water and heated to boiling (100 °C) under stirring. 30 mL of sodium citrate solution (1 wt%) was quickly injected. The reaction mixture was then refluxed for 30 min. The average size of obtained AuNPs is ~14 nm. For 23 nm/45 nm AuNPs, 10 mg of HAuCl₄ was dissolved in 500 mL of water and heated to boiling (100 °C) under stirring. To this solution, 3 mL of sodium citrate solution (1 wt%) was quickly injected. The reaction mixture was then stirred at 100 °C for 30 min. The solution was then cooled down to 85 °C. Another 3 mL of sodium citrate (1 wt%) solution was quickly injected into the solution, followed by the injection of 1 mL of HAuCl₄ solution (1 wt%). By repeating this step for four times/ten times every 15 min, 23 nm/45 nm AuNPs can be prepared.

2. Synthesis of MnO₂ nanocatalysts without AuNPs

20 mL of KMnO₄ solution (10 mM) was slowly added dropwise to 80 mL of sodium citrate solution (0.3 mg/mL) under vigorous stirring. The resulting mixture was stirred for 1 h and hydrothermally treated at 80 °C for 2 h. The obtained product was washed by water to obtain nanosheets (Figure S13a). The above solution of MnO₂ nanosheets was hydrothermally treated at 160 °C for additional 24 h. The product was centrifuged and washed by water to obtain pure MnO₂ nanorods (Figure S13b).

Fig. S1 The optical pictures of reaction mixtures (a) before, (b) after hydrothermal treatment and (c) after centrifugation.

Fig. S2 Bright-field and dark-field STEM images of AuNP@MnO₂ nanosheets, indicating that the monodispersed AuNPs surround with a dense MnO₂ shell with a typical homocentric core-shell nanostructures.

Fig. S3 TEM images (a-c) and high-resolution TEM (d, e) of $AuNP@MnO_2$ nanosheets shown in Fig. 1, indicating the random lamellar *d*-spacing of nanosheets.

Fig. S4 STEM EDX spectra and corresponding elemental composition (insert) of AuNP@MnO₂ nanosheets.

Table S1 Summary of the wei	ht content of Au in Au@MnO2	2 via atomic absorption measurement
-----------------------------	-----------------------------	-------------------------------------

Catalysts	AuNP@MnO2	AuNP@MnO2	AuNP@MnO2 curled	AuNP@MnO2
	nanosheets	nanoflakes	nanoflakes	nanorods
Weight Percentage (Au)	42.6%	41.5%	41.9%	39.7%

Fig. S5 The morphologies and structures of AuNP (4 nm)@MnO₂ nanosheets and nanorods. TEM images of AuNP (4 nm)@MnO₂ nanosheets (a) and nanorods (b). (c) The size distributions of AuNPs and nanosheets shown in Fig. S5a, and (d) the diameter distribution of nanorods shown in Fig. S5b.

Fig. S6 The morphologies and structures of AuNP (22 nm)@MnO₂ nanosheets and nanorods. TEM images of AuNP (22 nm)@MnO₂ nanosheets (a) and nanorods (b). (c) The size distributions of AuNPs and nanosheets shown in Fig. S6a, and (d) the diameter distribution of nanorods shown in Fig. S6b.

Fig. 7 The morphologies and structures of AuNP (45 nm)@MnO₂ nanosheets and nanorods. TEM images of AuNP (45 nm)@MnO₂ nanosheets (a) and nanorods (b). (c) The size distributions of AuNPs and nanosheets shown in Fig. S7a, and (d) the diameter distribution of nanorods shown in Fig. S7b.

Fig. S8 Supplementary TEM images (a-c) of AuNP@MnO2 nanoflakes shown in Fig. 2a.

Fig. S9 AFM images of AuNP@MnO₂ nanoflakes. The thickness of nanoflakes from AFM images is ~1.4 nm, clearly indicating only $2\sim3$ layers of MnO₂ single nanosheets presented in nanoflakes.

Fig. S10 Size distributions of AuNP@MnO₂ nanocatalysts. The diameter of AuNPs (a) and total nanoflakes (b) for AuNP@MnO₂ nanoflakes shown in Fig. 2a, and the diameter of AuNPs (a) and MnO₂ rods (b) for AuNP@MnO₂ nanorods shown in Fig. 2e.

Fig. S11 (a, b) Supplementary TEM images of curled AuNP@MnO₂ nanoflakes shown in Figure 2c. (c) Size distribution of the diameter of AuNPs in curled AuNP@MnO₂ shown in Fig. 2c.

Fig. S12 XPS spectra of AuNP@MnO₂ catalysts. The results indicate that the catalysts contain Mn, Au and O elements.

Fig. S13 The morphologies and structures of MnO_2 nanosheets (a) and nanorods (b) synthesized using KMnO₄ as Mn source and sodium citrate as reducing agent. XPS spectra (c) of MnO_2 nanosheets and nanorods shown in Fig. S13a and b. The signals of Mn 2p did not change, indicating no change in oxidation state between Mn^{3+} and Mn^{4+} in the absence of AuNPs.

Fig. S14 CV scans of AuNP@MnO₂ nanosheets in N₂- and O₂-saturated 0.1 M KOH solution. The CV curves were taken under rotation at 1600 rpm in both O₂-saturated and N₂-saturated 0.1 M KOH at a scan rate of 10 mV/s.

Fig. S15 ORR activity of Vulcan XC-72 carbon black. The ORR activity of carbon support is negligible, compared to that of Pt/C and AuNP@MnO₂ nanosheets,

Fig. S16 ORR activities (a) and Tafel plots (b) of pure MnO_2 nanosheets (black line) and AuNPs (14 nm) (red line). Both of them show the poor ORR activity, compared to that of AuNP@MnO₂ nanosheets. The rotation speed of electrodes is 1600 rpm and the loading amount is 0.24 mg/cm².

Fig. S17 LSV curves of AuNP@MnO₂ nanosheets at various rotating rates (a) and corresponding K-L plots (b), and (c) the electron transfer number (n) of AuNP@MnO₂ nanosheets and Pt/C at different potentials. The rotation speed of electrodes is 1600 rpm and the loading amount is 0.24 mg/cm^2 .

Fig. S18 (a,b) Electrochemical impedance spectroscopy (EIS) analysis at different potentials in volts vs. RHE for Au-MnO₂ nanosheets. The inset shows the fitted equivalent circuit for the EIS spectra. Z° and Z° represent the real and imaginary parts of the impedance values respectively. R_s, R_{ct}, Z_w, and C are solution resistance, charge transfer resistance, diffusion element, and capacitance, respectively. (c) Table of heterogeneous electron transfer rate constant at various potentials. The k^o value was calculated by assuming the average number of electrons transferred, n = 3.

At high potentials (0.8-0.9 V vs. RHE), Nyquist plots of the EIS curves are limited to the kinetically controlled region where the reaction mechanism is mainly dependent on the electron transfer rate. At potentials from 0.4-0.7 V vs. RHE, using values of R_{ct} (opposition of electron movement) obtained from the fitted equivalent circuit, the heterogeneous electron transfer rate constant was obtained.

$$J_0 = \frac{i_0}{A} = \frac{R T}{n A F R_{ct}}$$
$$k^o = \frac{i_0}{n F C}$$

where J_0 is the exchange current density A is the electrode surface area, i_0 is the exchange current, R is gas constant, T is temperature, n is the number of electrons transferred, F is Faraday's constant, C is the saturated concentration of oxygen in 0.1 M KOH.

Fig. S19 EIS analysis for MnO_2 nanosheets and nanorods. The charge transfer resistance of MnO_2 nanosheets is 1063 Ohm and the charge transfer resistance of MnO_2 nanorods is ~1515 Ohm.

Fig. S20 Methanol crossover effect tests of $AuNP@MnO_2$ nanosheets (black line) and Pt/C (red line) upon addition of methanol after about 100 seconds in an O₂-saturated 0.1 M KOH solution.