Supporting Information for

Spherical Sn-Fe$_3$O$_4@$graphite composite as long-life and high-rate-capability anode for lithium ion batteries

Hanyin Zhang1, Renzong Hu1*, Hui Liu1, Wei Sun1, Zhongchen Lu2, Jiangwen Liu1, Lichun Yang1, Yao Zhang3, Min Zhu1

1Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China

2School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China

3Cell technology research center, Sunwoda Electronic Co., Ltd, Shenzhen 518107, China

*Corresponding author.

E-mail address: msrenzonghu@scut.edu.cn
Fig. S1 (a) The SEM image of the Sn-Fe₃O₄@G composite powder, and the corresponding elemental mapping of (b) C, (c) Sn, (d) O and (e) Fe.

Compared with the elemental mapping of C dispersion (Fig. S1 (b)) and the SEM image (Fig. S1 (a)), it can prove that the sheet shape matrix is graphite. Moreover, it is clear that the dispersion of Sn is highly homogenous (Fig. S1 (c)). It is contributed to the combined effects of heating and stress during the P-milling process. The same dispersion of O (Fig. S1 (d)) and Fe (Fig. S1 (e)) represents the distribution of the Fe₃O₄. The Sn and Fe₃O₄ particles mainly disperse within the graphite matrix.
Fig. S2 The cycling performances of the Sn-Fe₃O₄@C composites at potential range between 0.01-2V.
Fig. S3 The comparative morphology evolution of the electrode surface for the Sn-Fe$_3$O$_4$@C composite electrodes: the secondary electron SEM images of (a) the pristine Sn-Fe$_3$O$_4$@C composite electrode and (b) the Sn-Fe$_3$O$_4$@C composite electrode for 50 cycling tests.