Supporting Information

Lili Jiang, Lizhi Sheng, Xu Chen, Tong Wei*, and Zhuangjun Fan*

Dr. L. Jiang, Dr. L. Sheng, X. Chen, Prof. T. Wei, Prof. Z. Fan
Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
*Address correspondence to E-mail: weitong666@163.com or fanzhj666@163.com
Figure S1. (a-c) SEM and TEM images of the carbonized auricularia (AC), (d) SEM image of N-PCB, (e) TEM image of N-PCB materials.
Figure S2. (a) and (b) TG/DTG curves of the dried auricularia (A) and NH$_4$Cl and ZnCl$_2$ solution impregnated auricularia (impregnated A) under Ar environment from room temperature to 800 °C, respectively.

Figure S3. TG curves of AC, PCB and N-PCB under Ar environment from room temperature to 800 °C, respectively.
Figure S4. XPS O1s spectra of the N-PCB.
Figure S5. (a) CV curves of N-PCB electrode under the lower scan rates. (b) Galvanostatic charge/discharge curves of N-PCB electrode at lower current densities. (c) Comparison of specific capacitances of AC, PCB and N-PCB electrodes based on CV curves from 2 to 500 mV s\(^{-1}\).
Figure S6. (a) Nyquist impedance plot of AC and PCB electrode. (b) The normalized imaginary part capacitance of AC and PCB electrodes.
Figure S7. (a) Charge-discharge curves of the N-PCB symmetric supercapacitor measured at current densities from 2 to 20 A g-1. (b) The gravimetric specific capacitances of N-PCB symmetric supercapacitor versus different current densities.