Electronic Supplementary Material

NiCo$_2$O$_4$@MnMoO$_4$ Core-shell Flower for High Performance Supercapacitors

Zhengxiang Gu, Wanzheng Chen, Xueyan Shan, Xiaojun Zhang*

Key Laboratory for Functional Molecular Solids of the Education Ministry of China,
College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Normal University, Wuhu, 241000, P R China.

Fax: +86-553-3869302; Tel: +86-553-3937135
E-mail: xjzhang@mail.ahnu.edu.cn

Figure S1 (a) Typical XRD patterns of the NiCo$_2$O$_4$ nano-microspheres (b) XRD pattern of the NiCo$_2$O$_4$@MnMoO$_4$ (6 h) core/shell composite scratched from Ni foam.
Figure S2 EDX mapping of the NiCo$_2$O$_4$ and NiCo$_2$O$_4$@MnMoO$_4$ core/shell materials.

Figure S3 The corresponding O1s spectrum of the NiCo$_2$O$_4$@MnMoO$_4$ NFRs.
Figure S4 Long-term cycling stability of the NiCo$_2$O$_4$ and NiCo$_2$O$_4$@MnMoO$_4$ hybrid electrodes. (d) Impedance Nyquist plots of the NiCo$_2$O$_4$ electrode and the NiCo$_2$O$_4$@MnMoO$_4$ hybrid electrode.

Figure S5 (a) The xps survey of NiCoO$_4$@MnMoO$_4$ with different molar ratio. (b) The Galvanostatic charge–discharge curves of NiCoO$_4$ @MnMoO$_4$ with different molar ratio.
Figure S6 (a) The charge–discharge curves of the MnMoO$_4$ hybrid electrode at different current density. (b) Galvanostatic charge–discharge curves of NiCo$_2$O$_4$, MnMoO$_4$ and NiCo$_2$O$_4$@MnMoO$_4$ at 1A g$^{-1}$.

Figure S7 Morphologies of the NiCo$_2$O$_4$@MnMoO$_4$ nanostructure at various reaction stages by setting the reaction time to (a) 3 h, (b) 10 h, (c) 15 h, (d) 20 h.
Figure S8 The N$_2$ adsorption-desorption isotherm of NiCo$_2$O$_4$ (a) and NiCo$_2$O$_4$@MnMoO$_4$ (b).

Figure S9 Comparison of Energy density and Power density with other relative literature.