Supporting Information

Wafer-scale antireflective protection layer of solution-processed TiO$_2$ nanorods for high performance silicon-based water splitting photocathodes

Dinsefa M. Andoshe1, Seokhoon Choi1, Young-Seok Shim1, Seung Hee Lee2, Yoonkoo Kim1, Cheon Woo Moon1, Do Hong Kim1, Seon Yong Lee1, Taemin Kim1, Hoon Kee Park1, Mi Gyoun Lee1, Jong-Myeong Jeon1, Ki Tae Nam1, Miyoung Kim1, Jong Kyu Kim2, Jihun Oh3,* Ho Won Jang1,*

1Department of Materials Science and Engineering, Research Institute for Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
2Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH) 37973, Republic of Korea
3Graduate School of EEWS (Energy, Environment, Water and Sustainability), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
*E-mail: hwjang@snu.ac.kr (Ho Won Jang), jihun.oh@kaist.ac.kr (Jihun Oh)

The length and diameter of the TiO$_2$ NRs was highly dependent on the synthesis time, temperature and cooling condition of the autoclave that contained the samples. When the temperature was fixed at 180°C, the synthesis time at 30 to 120 min and the autoclave cooled to 100°C naturally and subsequently to room temperature by dousing with water, the heights of the synthesized NRs increased. For example, the heights of the TiO$_2$ NRs at 180°C and 30” were ~100 nm, (Figure S1 a,b), whereas using a similar temperature with synthesis times of 1 and 2 h, the heights of TiO$_2$ NRs were 1 and 2 µm, respectively (Figure S1 e-h). Using similar synthesis conditions, at 180°C and 1 h, with the exception of autoclave cooling, when synthesis was complete the autoclave was removed from the oven and cooled to room temperature by dousing with water. The length of TiO$_2$NRs was ~350 nm, (Figure S1 c-d). When the temperature was changed to 220°C from 180°C, with synthesis for 2 h and the
autoclave cooled to room temperature similar to the same described for (g-h), the height and diameter of the resulting TiO$_2$ NRs decreased to 1 µm and ~32 nm, respectively, compared to their counterpart samples (g-h). In contrast, the diameter of the TiO$_2$ NRs decreased with increasing reaction time and temperature.

Figure S1. FSEM images of hydrothermally grown TiO$_2$ NRs/p-Si with controlled height and diameter. a-b, ~100 nm high, c-d, ~350 nm high, e-f, i-j, ~ 1 µm high g-h, ~ 2 µm high and their diameters is ~ 120 nm- 160nm for sample (a-h) and ~ 32 nm for i,j samples.
Figure S2. XRD spectra of hydrothermally grown TiO$_2$ NRs.

Both annealed and as grown TiO$_2$ NRs are Rutile as shown in figure S2. It is also revealed their difference in crystallinity between as grown and annealed sample.

Figure S3. a-c, High resolution X-ray photoelectron spectra of hydrothermally grown TiO$_2$ NRs with the electron beam deposited Pt nanoparticle (diameter 1-2.5 nm) on the TiO$_2$ NRs.
Figure S4. LSV of TiO\textsubscript{2} NRs/p-Si annealed at 500°C for an hour (red curve) and as grown TiO\textsubscript{2} NRs/p-Si (green curve).

Figure S5. Tafel slopes of TiO\textsubscript{2} seed layer, TiO\textsubscript{2} NRs, Pt/TiO\textsubscript{2} seed layer/p-Si and Pt/TiO\textsubscript{2} NRs samples plotted as log (j) against potential vs. RHE.
Figure S6. 300 cycles of LSV of the S6 photocathode measured after a week. The insets are LSV curves after each 100 cycles, the 1st, 2nd and 3rd hundreds cycles.

Video S1. Video for Hydrogen bubbling off. The spillover of H\textsubscript{2} from the S1, S2 and S3 photocathodes at the applied bias voltage between -0.4 V to -0.6 V.

Video S2. Video for Hydrogen bubbling off. The spillover of H\textsubscript{2} from the S4, S5 and S6 photocathodes at the applied bias voltage between 0.1 V to -0.1 V.