Supplementary information

Unexpected highly reversible topotactic CO$_2$ sorption/desorption capacity for potassium dititanate

Qianwen Zheng1, Liang Huang1, Yu Zhang1, Junya Wang1, Chen-Zi Zhao2, Qiang Zhang2, Weijie Zheng3, Dapeng Cao3, Dermot O’Hare4, Qiang Wang1.*

1College of Environmental Science and Engineering, Beijing Forestry University, 35 Tsinghua East Road, Haidian District, Beijing 100083, P. R. China
2Department of Chemical Engineering, Tsinghua University, 1 Tsinghua Road, Haidian District, Beijing 100084, P. R. China
3Division of Molecular and Materials Simulation, State Key Laboratory of Organic–Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
4Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom

*Corresponding author:
Professor Qiang Wang, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, P. R. China
Tel.: 86-13699130626
E-mail: qiang.wang.ox@gmail.com; qiangwang@bjfu.edu.cn
Figure S1. One CO$_2$ sorption/desorption cycle over K$_2$Ti$_2$O$_5$ both tested at 750 °C, which clearly indicates that the regeneration of the adsorbent K$_2$Ti$_2$O$_5$ in N$_2$ is very rapid (< 6 min).
Figure S2. SEM images of (a) fresh K$_2$Ti$_2$O$_5$, and (b) K$_2$Ti$_2$O$_5$ thermally treated at 750 °C in N$_2$ for 10.0 h.
Figure S3. XRD patterns of fresh K$_2$Ti$_2$O$_5$, the mixture of K$_2$Ti$_4$O$_9$ and K$_2$CO$_3$, and the thermally treated mixture of K$_2$Ti$_4$O$_9$ and K$_2$CO$_3$ with a ratio of 1:1 at 750 °C for 1.0, 2.0, 5.0, and 10.0 h, respectively, (•) K$_2$CO$_3$.