Supporting Information

From Fibrous Elastin Protein to One-dimensional Transition Metal Phosphide and Their Applications

Guilue Guo, a Yuanyuan Guo, a Huiteng Tan, a Hong Yu, a Weihan Chen, a Eileen Fong, a Qingyu Yan a* b

aSchool of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
bEnergy Research Institute@NTU, Nanyang Technological University, 50 Nanyang Drive, 639798, Singapore
Fig. S1 Elemental mapping of 1D CoP, scale bar in a: 200 nm

Fig. S2 XRD spectrum of 1D FeP₄.
Fig. S3 TEM characterization of 1D FeP₄. Scale bar: (a) 100 nm. (b-c) 50 nm. (d): 2 nm.

Fig. S4 Cycling performance of SIB based on 1D CoP at 0.1 C.
Fig. S5 CoP nanoparticles. Scale bars: (a) 100 nm; (b) 10 nm; (c) 2 nm.

Fig. S6 Lithium and sodium storage performance of CoP nanoparticles: (a) rate capability of lithium storage; (b) cycling performance of lithium storage; (c) rate capability of sodium storage.