Supporting Information

A post-grafting strategy to modify g-C$_3$N$_4$ with aromatic heterocycles for enhanced photocatalytic activity

Jianjian Tian, Lingxia Zhang, Xiangqian Fan, Yajun Zhou, Min Wang, Ruolin Cheng, Mengli Li, Xiaotian Kan, Xixiong Jin, Zhenghao Liu, Yanfeng Gao, Jianlin Shi

School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, P.R. China

State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P.R. China

School of Materials Science and Engineering, Shijiazhuang Tiedao University, 17 Northeast, Second Inner Ring, Shijiazhuang, 050043, P.R. China

A

H$_2$N-C-NH$_2$ $\xrightarrow{\Delta}$

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016
Fig. S1 Scheme of the synthesis of CNTE-x sample

Fig. S2 (a) XRD patterns and (b) FT-IR spectra of CN and CNTE-x samples.

Fig. S3 O 1S XPS spectra of CN and CNTE-1.
Fig. S4 Zeta potentials of CN and CNTE-1.

Fig. S5 The corresponding band gap of CN and CNTE-x samples estimated by related curves of $(\alpha h\nu)^{1/2}$ vs photon energy plotted.

Fig. S6 The BET surface area ratios and H$_2$ evolution rate ratios of CNTN-x/CN.
Fig. S7 Mott–Schottky plots collected for CN (a) and CNTE-1(b) at a frequency of 962 Hz in the dark.

Mott–Schottky tests were carried out in order to confirm the electronic potentials of CN and CNTE-1. The measured potentials can be converted to the reversible hydrogen electrode (RHE) scale via the Nernst equation: \(E_{\text{RHE}} = E_{\text{Ag/AgCl}} + 0.05916 \times \text{pH} + E^0_{\text{Ag/AgCl}} \).

Where \(E_{\text{RHE}} \) is the converted potential vs. RHE, \(E_{\text{Ag/AgCl}} \) is the experimental potential measured against the Ag/AgCl reference electrode, and \(E^0_{\text{Ag/AgCl}} \) is the standard potential of Ag/AgCl at 298 K (0.1976 V). The calculated conduction band edges of CN and CNTE-1 are -1.02 eV and -1.15 eV, respectively.

Fig. S8 (a) XRD patterns and (b) FT-IR spectra of fresh CNTE-1 and used CNTE-1 samples.
Fig. S9 (a) XRD patterns and (b) FT-IR spectra and (c) UV-vis absorption spectra and (d) PL spectra (excitation wavelength=380 nm) and (e) Pore size distributions and (f) Hydrogen evolution rates of CN and CN-250.