SUPPORTING INFORMATION

Molybdenum Supported Amorphous MoS$_3$ Catalyst for Efficient Hydrogen Evolution in Solar-water-splitting Devices

Bofei Liu1,2, Zhonghua Jin1,3, Lisha Bai1,2, Junhui Liang1, Qixing Zhang1, Ning Wang1, Caichi Liu3, Changchun Wei1,2, Ying Zhao1,2, and Xiaodan Zhang1,2,*

1Institute of Photo Electronic Thin Film Devices and Technology of Nankai University, Key Laboratory of Photoelectronic Thin Film Devices and Technology, Tianjin 300071, P. R. China

2Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People’s Republic of China

3Institute of Semiconductor Materials, Hebei University of Technology, Tianjin 300130, China
Fig. S1 (a) Transmission electron micrographs (TEM) of a-MoS$_3$ catalysts deposited from a diluted catalyst solution after 15 min sonication. The average size of a-MoS$_3$ nanoparticles is also noted on. (b) X-ray diffraction (XRD) characterization and corresponding schematic diagrams of bare rFTO and rFTO supported a-MoS$_3$ catalysts. (c,d) X-ray photoelectron spectra (XPS) of the a-MoS$_3$ catalyst surface and (e) a-MoS$_3$ catalysts after hydrogen evolution.

The TEM graph for isolated a-MoS$_3$ NPs in diluted a-MoS$_3$ suspension is presented in
Figure S1a, clearly demonstrating their nanoparticle structure with an average diameter about 60 nm. XRD spectra in Figure S1b further illustrate the amorphous nature of the chemically synthesized a-MoS$_3$ catalysts. Many defect sites and coordinately unsaturated S atoms, which can absorb H with a small free energy, will expose in amorphous material architecture and promote HER catalytic activity. XPS spectra in Figure S1c,d also illustrate that the synthesized material resembles MoS$_3$. The sulfur 2p region shows a peak at a binding energy of 163.5 eV, which is well consistent with the reports on MoS$_3$ materials containing sulfur in a combination of S$_2^{2-}$ and S$^{2-}$ groups. Additionally, Mo 3d regions also reveal Mo signals at 231.8 eV and 235.0 eV. There is also no peak shifting after hydrogen evolution, indicating no valance state change from Mo$^{6+}$ to Mo$^{4+}$. Consequently, TEM, XPS, and XRD suggest that the chemically synthesized materials are principally composed of amorphous MoS$_3$ catalysts.
Fig. S2 Optical microscope images for (a, b) smooth FTO, (c, d) rough FTO (rFTO), and (e, f) rough FTO/Mo supported a-MoS$_3$ catalysts.
Fig. S3 Cyclic voltammograms (CVs) for (a) unsupported a-MoS$_3$ and (b) Mo metal catalysts at various scan rates (20–180 mV/s) used to estimate the C_{dl} and relative S_{as} values of the catalysts.

Fig. S4 Potential dependent double layer capacitance (C_{dl}^*) for the catalysts extracted from corresponding EIS spectra.
Fig. S5 Chopped and illuminated linear sweep voltammogram (LSV) characteristics of the Mo supported a-MoS$_3$ catalysts in a wired photoelectrochemical (PEC)/PV device for solar water splitting.

Fig. S6 Image displaying the hydrogen gas production process on photocathodes with Mo supported MoS$_3$ catalysts in a wired photoelectrochemical (PEC)/PV device for solar water splitting.