Supporting Information

In-situ formed Se/CMK-3 Composite for Rechargeable Lithium-ion Batteries with a Long-Term Cycling Performance

Cheng Zheng, Minying Liu, Wenqiang Chen, Lingxing Zeng and Mingdeng Wei *

a State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian 350002, China
b Institute of Advanced Energy Materials, Fuzhou University, Fuzhou, Fujian 350002, China
c College of Environment Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China

*Corresponding author: Mingdeng Wei
Tel./fax: +86-591-83753180
E-mail address: wei-mingdeng@fzu.edu.cn
Fig. S1 Schematic illustration for the synthetic procedure of the Se/CMK-3 composite.

CMK-3 Mixture of SeO₂ aqueous solution and CMK-3

SeO₂ aqueous

Evaporation of water

SeO₂-CMK-3 intermediate

In-situ reduction

Se/CMK-3 composite
Fig. 52 Charge/discharge profiles for the Se/CMK-3 composite within a voltage window of 0.01-3 V.
Fig. S3 Digital photographs of (a) Se/CMK-3 and (b) Se anode after 60 cycles at 1 C. The cells were disassembled in air and the working electrode was washed with running ethanol.