Supporting Information

Excellent energy density of polymer nanocomposites containing BaTiO$_3$@Al$_2$O$_3$ nanofibers induced by moderation interfacial area

Zhongbin Pana, Lingmin Yaob, Jiwei Zhaia, Bo Shen, Shaohui Liua, Haitao Wanga, and Jinhua Liua

aSchool of Materials Science & Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China.
bInstitute of Applied Physics and Materials Engineering, Faculty of Science and Technology, University of Macau, Macao SAR 999078, China

Fig. S1 (a) Schematic of forming process of core-shell structure BT@Al$_2$O$_3$ nanofibers; (b) SEM image of the as-electrospun fibers.
Fig. S2 The mapping of core-shell structure BT@Al₂O₃ nanofibers.

Fig. S3 (a) FT-IR spectra (b) XPS spectra of BT nfs, BT@Al₂O₃ nfs and BT@Al₂O₃ nfs-DA.

IR absorption peaks appears at 3000-3650 cm⁻¹ (–OH groups and –NH), 2925 cm⁻¹ and 2854 cm⁻¹ (–CH₂), 1626 cm⁻¹ (–NH), 1505 cm⁻¹ (–C–C) and 1254 cm⁻¹ (–C–N), imply that the dopamine have been introduced successfully onto BT@Al₂O₃ nanofibers surface. Two relatively strong peaks at approximately 74.3 and 119.2 eV can be
discovered of the BT@Al₂O₃, corresponding to the Al 2s and Al 2p peaks of Al₂O₃. Compared with BT and BT@Al₂O₃, the peak of N1s is observed BT@Al₂O₃-DA at about 401 eV owing to free –NH₂, affirming the successful introduced of dopamine on the BT@Al₂O₃ nanofibers surface.

Fig. S4 Frequency-dependence of the (a) dielectric constant and (b) dielectric loss tangent of BT@Al₂O₃ nfs/PVDF nanocomposites.

Fig. S5 Frequency-dependence of the (a) dielectric constant and (b) dielectric loss tangent of BT nfs/PVDF nanocomposites.
Fig. S6 The leakage current density of (a) BT nfs/PVDF (b) BT@Al$_2$O$_3$ nfs/PVDF nanocomposites.

Fig. S7 D-E curves of the 5 vol.% BT nfs/PVDF and BT@Al$_2$O$_3$ nfs/PVDF nanocomposites.
Fig. S8 D-E curves of the BT@Al₂O₃ nfs/PVDF nanocomposites loading with different concentration of the fillers.