Electronic Supplementary Information

A versatile and efficient method to fabricate durable superhydrophobic surfaces on wood, lignocellulosic fiber, glass, and metal substrates

Yiqiang Wua, b, #, Shanshan Jiaa, #, Yan Qinga, b, *, Sha Luoa, and Ming Liua

a College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
b Hunan Provincial Collaborative Innovation Center for High-efficiency Utilization of Wood and Bamboo Resources, Central South University of Forestry and Technology, Changsha 410004, China
These authors contributed equally to this work and share first authorship.
*E-mail: qingyan0429@163.com
Supporting Figures and Movies

Figure S1. Schematic illustration of the sandpaper abrasion test

Figure S2. Soil and sawdust were used as dirt to test the self-cleaning effect of the superhydrophobic surface

Figure S3. The as-prepared surface shows both superhydrophobic and superoleophilic properties

Movie S1 Water droplet bouncing test

Movie S2 Various types of abrasion tests including knife-scratching test, finger-wiping test and brushing test

Movie S3 Self-cleaning test
Figure S1. Schematic illustration of the sandpaper abrasion test

Figure S2. Soil and sawdust were used as dirt to test the self-cleaning effect of the superhydrophobic surface

Figure S3. The as-prepared surface shows both superhydrophobic (left) and superoleophilic properties (right)