Understanding the electrochemical properties of A_2MSiO_4 (A = Li, Na; M = Fe, Mn, Co and Ni) and Na doping effect on Li_2MSiO_4 from first-principle calculations

Yuhan Li,^{ab} Weiwei Sun,^d Jing Liang,^{ac} Hao Sun,^{ac} Igor Di Marco,^d Lei Ni^b, Shuwei Tang^{*ac} and Jingping Zhang^{*a}

^a Institute of Functional Material, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China.

*E-mail: tangsw911@nenu.edu.cn, jpzhang@nenu.edu.cn

^b College of Chemistry and Biology, Beihua University, Jilin, Jilin 132013, China.

^c National & Local United Engineering Lab for Power Battery, Northeast Normal University, Changchun, Jilin 130024, China.

^d Department of Physics and Astronomy, Division of Materials Theory, Uppsala University, Box 516, SE-75120 Uppsala, Sweden.

Fig. S1 Calculated local density of states for (a) Li_xMSiO_4 and (b) Na_xMSiO_4 (x = 1 and 2 and M = Fe, Mn, Co and Ni). The total density of states is figured in a black, Li is in pink, Na is in yellow, O is in red line, Si is in green and M is in blue line

Fig. S2 Calculated formation energies for possible intermediate phases of $Li_1Na_{0.5}MSiO_4$ (M = Fe, Mn, Co and Ni)

Fig. S3 Calculated local density of states for (a) $Li_{1.5}Na_{0.5}MSiO_4$ and (b) $Li_{0.5}Na_{0.5}MSiO_4$ (M = Fe, Mn, Co and Ni)

by a black line, Li with pink, O with red, P with green and V with blue.