Supporting Information

Unveiling the thermodynamic and kinetic properties of Eldfellite, NaFe(SO₄)₂: toward a high-capacity and low-cost cathode material

Amitava Banerjee*a, Rafael B. Araujo*a and Rajeev Ahujaa,b

^aCondensed Matter Theory Group, Department of Physics and Astronomy, Box 516, Uppsala University, S-75120 Uppsala, Sweden.

^bApplied Materials Physics, Department of Materials and Engineering, Royal Institute of Technology (KTH), S-100 44 Stockholm, Sweden.

Figure S1. The ground state structure of each composition of $Na_xFe(SO_4)_2$ (x=0-2), obtaining from the global optimization process is shown here. a) $Na_0Fe(SO_4)_2$, b) $Na_{0.25}Fe(SO_4)_2$, c) $Na_{0.5}Fe(SO_4)_2$, d) $Na_{0.75}Fe(SO_4)_2$, e) $Na_1Fe(SO_4)_2$, f) $Na_{1.25}Fe(SO_4)_2$, g) $Na_{1.5}Fe(SO_4)_2$, h) $Na_{1.75}Fe(SO_4)_2$, and i) $Na_2Fe(SO_4)_2$.