Supporting Information

Efficient ternary blend all-polymer solar cells with a polythiophene derivative as hole-cascade material

Wenyan Su,^{‡a} Qunping Fan,^{‡a} Xia Guo,^{*a} Bing Guo,^a Wanbin Li,^a Youdi Zhang,^a

Maojie Zhang*a and Yongfang Li*abc

^a Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical

Engineering and Materials Science, Soochow University, Suzhou 215123, China.

E-mail: mjzhang@suda.edu.cn; guoxia@suda.edu.cn; liyongfang@suda.edu.cn

^b Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of

Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190,

China.

E-mail: liyf@iccas.ac.cn

^c University of Chinese Academy of Sciences, Beijing 100049, China.

[‡] These authors contributed equally to this work.

Fig. S1 UV-vis absorption spectra of the **PTB7-Th:PBDD-ff4T:N2200** blend films with different weight ratios of **PBDD-ff4T** (60 wt.% is for the binary blend film based on **PBDD-ff4T:N2200** (1.5:1, w/w)).

Fig. S2 The *J-V* curves of (a) the hole-only devices with the structure of ITO/PEDOT:PSS/active layer/MoO₃/Al and (b) the electron-only devices with the structure of ITO/ZnO/active layer/Ca/Al according to the SCLC model (60 wt.% is for the binary blend film based on **PBDD-ff4T:N2200** (1.5:1, w/w)).

Fig. S3 The J-V curve of the binary all-PSC based on PTB7-Th:PBDD-ff4T (1:1,

w/w).

Fig. S4. AFM images of the ternary blend films based on **PTB7-Th:PBDD-ff4T:N2200** with with fixed **PTB7-Th:N2200** weight ratio of 1.5:1 and with 0 wt.% (a), 5 wt.% (b), 10 wt.% (c), 15 wt.% (d), 20 wt.% (e), and 30 wt.% (f) of **PBDD-ff4T**, and (g) the AFM images of binary blend film based on **PBDD-ff4T:N2200** with a D/A weight ratio of 1.5:1 (60 wt.% of **PBDD-ff4T**).

Fig. S5. The XRD curves of the binary blend films of PTB7-Th:N2200 (0% PBDDff4T) and PBDD-ff4T:N2200 (60% PBDD-ff4T), and the ternary blend film with 10 wt.% of PBDD-ff4T.

Fig. S6. The PL spectra of the **PTB7-Th/PBDD-ff4T** binary blend films with different blend ratios (where the ratio of PBT7-Th:PBDD-ff4T is consistent with that in the ternary blend films), (a) excited at 620 nm for **PTB7-Th** and the related blend films, (b) excited 600 nm for **PBDD-ff4T** and the related blend films).