Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information (ESI)

Self-Healing Polymers and Composites for Extreme Environments

Yunseon Heo,^a Mohammad H. Malakooti^b and Henry A. Sodano*^{b,c,d}

^a Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611, USA

^b Department of Aerospace Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA

^c Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA ^d Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan,

48109, USA

*Correspondence - hsodano@umich.edu

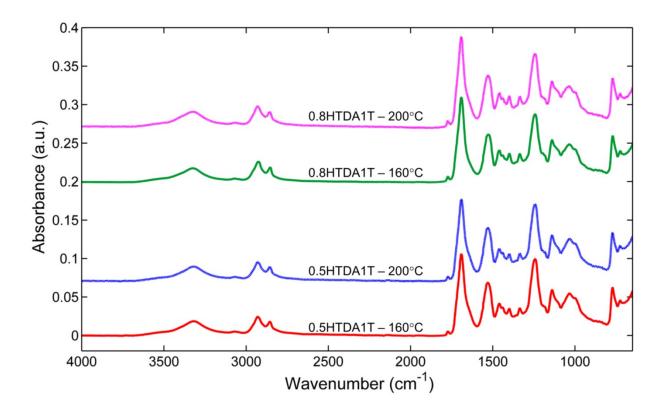


Figure S1: FTIR spectra of self-healing polymers before and after annealing at 200°C for 90 minutes.

Figure S2. A distinct color change was observed after annealing of the 0.8HTDA1T polymer specimens at 160 °C for 20 hours in the nitrogen.

Figure S3: Schematic of the examined specimens with dimensions in inches: (a) compact tension test polymer specimen and (b) unidirectional fiber reinforced polymer specimens for short beam strength (SBS) testing.

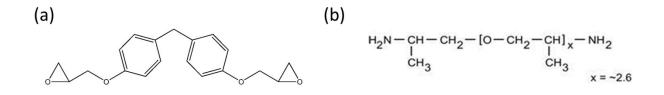


Figure S4: Chemical structures of the epoxy resin and curing agent: (a) EPON[™] Resin 862 (Diglycidyl Ether of Bisphenol F) and (b) EPIKURE[™] 3230 which is a difunctional primary amine curing agent.