In-situ growth of metal nanoparticles on boron nitride nanosheets as highly efficient catalysts

Li Fua,b, Guoxin Chenb, Nan Jiangb, Jinhong Yub, Cheng-Te Linb,* and Aimin Yua,*

a Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn VIC, Australia
E-mail: aiminyu@swin.edu.au

b Key Laboratory of Marine New Materials and Related Technology, Zhejiang Key Laboratory of Marine Materials and Protection Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China
E-mail: linzhengde@nimte.ac.cn

\begin{center}
\includegraphics[width=0.5\textwidth]{fig_s1.png}
\end{center}

\textbf{Fig. S1} FTIR spectra of pristine h-BN powder and BNNS collected after 1 h, 3h, 5h and 10h tip-sonication.
Fig. S2 N 1s narrow XPS scans of BNNS exfoliated in NaOH-water system for 1 h, 3 h and 5 h.

Fig. S3 SEM images of (A) pristine h-BN and (B) h-BN residue after exfoliation. (C) TEM image of pristine h-BN.
Fig. S4 (A) Lateral size distribution and (B) thickness distribution of BNNS.

Fig. S5 (A) UV-vis spectra of BNNS, BNNS-5h-Au and BNNS-10h-Au nanocomposites. (B) Digital photos of BNNS-1h-Au, BNNS-5h-Au and BNNS-10h-Au.
Fig. S6 XRD patterns of BNNS and BNNS-Au nanocomposite.
Fig. S7 SEM images of (A) BNNS-Ag, (B) BNNS-Pd and (C) BNNS-Pt nanocomposites. (D) Ag 3d narrow XPS scan of BNNS-Ag nanocomposite. (E) Pd 3d narrow XPS scan of BNNS-Pd nanocomposite. (F) Pt 4f narrow XPS scan of BNNS-Pt nanocomposite.

Fig. S8 UV–visible spectra of Rh B during the reduction process in the presence of (A) NaBH$_4$ and (B) BNNS+NaBH$_4$.

Fig. S9 (A) The catalytic performance of BNNS-Au NP composite for 3 cycles Rh B degradation. (B) SEM image of BNNS-Au NP composite after 3 cycles Rh B degradation.

Table S1 Performance comparison of the proposed BNNS-Au nanocomposite and other reported catalysts towards the reduction of RhB.
Table S2 Performance comparison of the proposed BNNS/Au/GCE and other electrodes towards the electrochemical detection of hydrazine.

<table>
<thead>
<tr>
<th>Electrode</th>
<th>Method</th>
<th>LOD (μM)</th>
<th>Linear range (μM)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>CeO$_2$–OMC* /GCE</td>
<td>I-T</td>
<td>0.012</td>
<td>0.04-192</td>
<td>5</td>
</tr>
<tr>
<td>Au@Pd-TiO$_2$NTs* /GCE</td>
<td>I-T</td>
<td>0.012</td>
<td>0.06-700</td>
<td>6</td>
</tr>
<tr>
<td>Au@Pd-rGO* /GCE</td>
<td>I-T</td>
<td>0.08</td>
<td>2-40</td>
<td>7</td>
</tr>
<tr>
<td>rGO-ZnO/GCE</td>
<td>I-T</td>
<td>0.8</td>
<td>1-33500</td>
<td>8</td>
</tr>
<tr>
<td>DHsalophen isomers/GCE</td>
<td>CV</td>
<td>1.6</td>
<td>10-400; 400-4000</td>
<td>9</td>
</tr>
<tr>
<td>Polypyrrole NWs* - AuNPs/GCE</td>
<td>DPV</td>
<td>0.2</td>
<td>1-500; 500-7500</td>
<td>10</td>
</tr>
<tr>
<td>BNNS-Au/GCE</td>
<td>DPV</td>
<td>0.0014</td>
<td>0.0005-0.5; 0.5-20; 20-2500</td>
<td>This work</td>
</tr>
</tbody>
</table>

*OMC = ordered mesoporous carbon *NTs = nanotubes *rGO = reduced graphene oxide *NWs = nanowires

References

